- #1

- 1,444

- 0

the general formula is [itex]\phi(\vec{r}+\vec{a})=\sum_{n=0}^{\infty} \frac{1}{n!} (\vec{a} \cdot \nabla)^n \phi(\vec{a})[/itex]

but [itex]\vec{k} \cdot \vec{r}[/itex] isn't of the form [itex]\vec{r}+\vec{a}[/itex] is it?

You are using an out of date browser. It may not display this or other websites correctly.

You should upgrade or use an alternative browser.

You should upgrade or use an alternative browser.

- Thread starter latentcorpse
- Start date

- #1

- 1,444

- 0

the general formula is [itex]\phi(\vec{r}+\vec{a})=\sum_{n=0}^{\infty} \frac{1}{n!} (\vec{a} \cdot \nabla)^n \phi(\vec{a})[/itex]

but [itex]\vec{k} \cdot \vec{r}[/itex] isn't of the form [itex]\vec{r}+\vec{a}[/itex] is it?

- #2

- 144

- 1

the general formula is [itex]\phi(\vec{r}+\vec{a})=\sum_{n=0}^{\infty} \frac{1}{n!} (\vec{a} \cdot \nabla)^n \phi(\vec{a})[/itex]

but [itex]\vec{k} \cdot \vec{r}[/itex] isn't of the form [itex]\vec{r}+\vec{a}[/itex] is it?

I can only answer your second question. No, as far as I know, it isn't. In the former case (the scalar product) you multiply the corresponding vector components and in the latter you add them.

- #3

- 1,444

- 0

- #4

- 166

- 0

Is this for a specific k and a specific r? If it really is a constant, then there is no reason to Taylor expand in the first place. However, the same could be said for exp(x), if we are only talking about some specific value of x. k and or r could still be variables here, even though their dot product has a constant value, for specific k and specific r. You need to know what variable(s) you are expanding wrt first.

- #5

- 12,121

- 160

How do you Taylor expand [itex]e^{i \vec{k} \cdot \vec{r}}[/itex]

When I read that, I assume you just expand e

Share: