I need to find the first three terms of this series.(adsbygoogle = window.adsbygoogle || []).push({});

Am I correct in saying z^i = exp(i*Log(z)), then using the taylor series for e^z, giving me:

(i*Log(z)) - 1/2*(Log(z))^2 - i/6*(Log(z))^3 + 1/24*(Log(z))^4 + ....

I haven't worked it out, but this seems to mean that the coefficients for every term in the Taylor series for z^i is actually an infinite series, found by combining terms in the Log(z) Taylor series.

This seems like I could be way off though, so I don't want to do the calculations if I don't have to.

Thanks in advance.

**Physics Forums - The Fusion of Science and Community**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Taylor series of z^i at z=i

Loading...

Similar Threads for Taylor series | Date |
---|---|

I Taylor series | Jul 21, 2017 |

I How to understand Taylor/Mclaurin series? | May 19, 2017 |

A Taylor/Maclaurin series for piecewise defined function | Feb 17, 2017 |

I Convergence of Taylor series in a point implies analyticity | Dec 10, 2016 |

I Series Expansion to Function | Sep 19, 2016 |

**Physics Forums - The Fusion of Science and Community**