Problem Statement(adsbygoogle = window.adsbygoogle || []).push({});

Compute the Taylor Series expansion of f(x) = exp(-x^2) around 0 and use it to find an approximate value of the integral (from 0 to 0.1) of exp(-t^2) dt

Solution

Part1:

First to compute the Taylor Series - I am pretty sure about this step so I will not give details. But if I am wrong, please correct.

Taylor Series = 1 - (x^2) + (x^4)/2! - (x^6)/3! + ... --- EQUATION 1

And a closed form solution is from Sum (i from 0 to inf) of (-1^i)* (x^2*i)/i!

Part2:

This is the part I am not doing right - maybe I am not approaching the problem in the right way.

To solve the integral evaluate the Taylor Series in equation 1 above at 0.1 and 0 and subtract. Also, I took just the first 4 terms of equation 1. Is there a way I can determine how many terms I should take?

At x = 0.1: Equation 1 is evaluated to 0.99004983375

At x = 0.0: Equation 1 is evaluated to 1.000000000000

Subtracting above gives me an integral value of-0.00995016625.

So my two questions are:

1- Now this I know is clearly wrong as the value should be positive but I cannot figure out what I am doing wrong. The absolute value above is right but why am I getting a negative. I tried above method for positive exponentials and it worked but any negative exponential, I am always getting the negative answer.

2- How do I determine how many terms I should use in my Taylor Series expression.

Thanks

Asif

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Taylor Series Question

**Physics Forums | Science Articles, Homework Help, Discussion**