We were gievn a question in tutorial last week asking us to calculate the Taylor series of the function f(x,y) = e^(x^(2) + y^(2)) to second order in h and k about the point x=0, y=0(adsbygoogle = window.adsbygoogle || []).push({});

I've got the forumla here with all the h's and k's in it and have it written down, but it's actually how to work it out that's confusing me.

f(a,b) + 1/1! (hd/dx + kd/dy)f(a'b) etc....

My confusion is do you multiply out the brackets so you'd have-

f(a,b) + 1/1! (hdf(a,b)/dx + kdf(a,b)/dy)

So you do the derivatives and then sub in the values of x and y

Or, do you leave it as it is the first tiem I wrote it and end up with-

1+ (hd/dx + kd/dx) +0.5(hd/dx + kd/dy)^2 etc

I know there are more terms but I've so much trouble typing out mathematical terms on this computer! I know this is v.obvious etc but I just want to get this clear in my head cos I have a test this Wednesday at uni and I want to go in with a fighting chance! Thanks!

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Taylor series with partial derivatives

**Physics Forums | Science Articles, Homework Help, Discussion**