- #1

- 2

- 0

## Homework Statement

[itex]f(x)[/itex] 2 times differentiable function on [itex](0, \infty)[/itex], and [itex]\lim\limits_{x \rightarrow \infty} f(x)=0[/itex]. there is a [itex]M[/itex] such that [itex]M=\sup\limits_{x>0}\vert f^{\prime\prime}(x) \vert[/itex]. And also for [itex]L>0[/itex]

[itex]g(L)=\sup\limits_{x>L}\vert f(x) \vert[/itex], and [itex]h(L)=\sup\limits_{x>L}\vert f^{\prime}(x) \vert[/itex].

Then, for and [itex]\delta > 0[/itex], show that holds

[itex]h(L) \leq \frac{2}{\delta}g(L) + \frac{\delta}{2}M[/itex]

## Homework Equations

## The Attempt at a Solution

I don't know how should I start,

but I think we need to use Taylors theorem,

can you help.....