I am trying to prove the identity(adsbygoogle = window.adsbygoogle || []).push({});

[tex]S_{12} ^ 2 = 4S^2-2S_{12}[/tex]

where S12 is the tensor operator:

[tex]S_{12} = 3(\vec{\sigma_1} \vec{r})(\vec{\sigma_2} \vec{r}) / r^2 - (\vec{\sigma_1} \vec{\sigma_2})[/tex]

where sigmas are vectors made of the Pauli matrices in the space of particle 1 and 2, and

[tex]\vec{S} = (\vec{\sigma_1} + \vec{\sigma_2})/2[/tex]

the spin of the two particle system, and I am using the identity:

[tex](\vec{a} \vec{\sigma})(\vec{b} \vec{\sigma}) = \vec{a}\vec{b} + i \sigma (\vec{a} X \vec{b})[/tex]

to match the terms in each sides, however, i get a term like:

[tex](\vec{\sigma_1} \vec{n})(\vec{\sigma_2} \vec{n})(\vec{\sigma_1} \vec{\sigma_2}) = 1 + i (\vec{\sigma_1} \vec{n}) (\vec{n}(\vec{\sigma_1} X \vec{\sigma_2}))[/tex]

and I don't know how to further simplify this, but if the identity really holds, then this should be a linear combination of 1, [tex]\vec{\sigma_1} \vec{\sigma_2}[/tex] and [tex](\vec{\sigma_1} \vec{n}) (\vec{\sigma_2}[/tex]\vec{n}), where n is a [tex]vec{r} / r[/tex]. So, how do I further simplify this? Or is there an easier way to prove this without tedious computation?

**Physics Forums - The Fusion of Science and Community**

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Tensor force

Can you offer guidance or do you also need help?

Draft saved
Draft deleted

Loading...

Similar Threads - Tensor force | Date |
---|---|

I Force as a Time Derivative of ihk | Jan 8, 2018 |

A Trouble with Peskin QFT textbook | Dec 3, 2017 |

I How do i find the eigenvalues of this tough Hamiltonian? | Apr 8, 2017 |

I Why the tensor product (historical question)? | Jun 22, 2016 |

A Transforming Spin Matrices (Sx, Sy, Sz) to a Spherical Basis | Jun 22, 2016 |

**Physics Forums - The Fusion of Science and Community**