I am trying to learn tensor calculus, but I must be confused about tensor invariance. I know the definition of a tensor is a number or function that transforms according to certain rules under a change of coordinates. The transformation leaves the number or function invariant if it is a tensor. Here is where I am confused-- when they speak of change of coordinates.(adsbygoogle = window.adsbygoogle || []).push({});

For example:

Let's say there is a vector in an orthogonal x-y coordinate system that has a certain magnitude |v|. Now lets say we obtain a new coordinate system by rotating the original coordinate system counter-clockwise around its origin. I know that with respect to the new coordinate system the vector would still have the same magnitude |v|. Thus, the vector would qualify as a rank1 tensor. This is intuitive and easy to understand.

But, I often read about tensors that are applied with respect to different inertial reference systems. In this case, however, a velocity vector usually is not invariant with respect to two different inertial reference frames. But an acceleration vector is invariant and thus would qualify as a rank 1 tensor.

So, where I am confused has to do with the term "change of coordinates". Is tensor invariance talking about invariance with respect to a change of coordinates as in the first example (a rotated coordinate system) or with respect to the second example (different inertial reference systems.) If someone could clarify this I would appreciate it.

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Tensor invariance

Can you offer guidance or do you also need help?

Draft saved
Draft deleted

**Physics Forums | Science Articles, Homework Help, Discussion**