This book says that if [itex]W^aX_a=0[/itex] and [itex]X_a[/itex] is arbitrary, then I should be able to prove that [itex]W^a=0[/itex]. I don't see how this is possible. This is the equivalent of the vector dot product, so if, say, [itex]X_a=(1,0,0,0)[/itex], then [itex]W^a[/itex] could be (0,1,1,1), and the dot product would be [itex]1*0+0*1+0*1+0*1=0[/itex]. Why would [itex]W^a[/itex] have to be 0?(adsbygoogle = window.adsbygoogle || []).push({});

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Tensor multiplication

Loading...

Similar Threads for Tensor multiplication |
---|

A Tensor symmetries and the symmetric groups |

I Tensors vs linear algebra |

B Tensor Product, Basis Vectors and Tensor Components |

I Matrix for transforming vector components under rotation |

Insights What Is a Tensor? - Comments |

**Physics Forums | Science Articles, Homework Help, Discussion**