Hello,(adsbygoogle = window.adsbygoogle || []).push({});

So I'm trying to understand the construction of the tensor product of 2 vector spaces as stated in the http://en.wikipedia.org/wiki/Tensor_product" [Broken]. Now, in the article it states that the tensor product of two vector spaces V and W is the quotient space F( VxW )/R (F( VxW ) being the free vector space over VxW). I'm slightly confused about the definition of R, which is defined as the space generated by the 3 following equivalence relations: (v+u,w) ~ (v,w)+(u,w), (v,u+w) ~ (v,u)+(v,w), and k*(v,w) ~ (k*v,w) ~ (v,k*w). Could anybody elaborate on this? How does one generate a space from equivalence relations?

-Adam

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Tensor Product Construction

**Physics Forums | Science Articles, Homework Help, Discussion**