Is the Discovery of the X(3872) Particle Indicative of a New Type of Meson?

  • Thread starter meteor
  • Start date
  • Tags
    Japan
In summary, on November 14, 2003, the Belle collaboration at the KEK laboratory in Japan announced the discovery of a new sub-atomic particle called the "X(3872)". The particle does not fit into any known particle scheme and is speculated to be a new type of meson containing four quarks. Theorists also suggest the possibility of a heptaquark and tetraquarks, but the limit of quarks in a particle is determined by their color neutrality. The X(3872) is believed to have quantum numbers of either 0-(1--) or 1+(1--) and may be redesignated as psi(3872) in the future. Its decay mode has been theorized as
  • #1
meteor
940
0
New particle turns up in Japan
14 November 2003

The Belle collaboration at the KEK laboratory in Japan has discovered a new sub-atomic particle which it is calling the "X(3872)". The particle does not fit into any known particle scheme and theorists are speculating that it might be a hitherto unseen type of meson that contains four quarks

http://physicsweb.org/article/news/7/11/7
This people claims that is possible that they have discovered a particle made of 4 quarks, and I've read that there's also speculation about a particle called hexaquark, made of 6 quarks. Is there a limit to the number of quarks that can have a particle?
Would be surprising if someone in the future discovers the "dodecaquark"
 
Physics news on Phys.org
  • #2
The restriction for hadrons is simply that they must be color neutral. There are a couple of ways this can happen:

Two quarks:
  • [tex]red + \overline{red}[/tex]
  • [tex]green + \overline{green}[/tex]
  • [tex]blue + \overline{blue}[/tex]

Three quarks:
  • [tex]red + green + blue[/tex]
  • [tex]\overline{red} + \overline{green} + \overline{blue}[/tex]

A color-neutral tetraquark could be made of two color-neutral pairs.

A color-neutral pentaquark could be made of one color-neutral pair and one color-neutral triplet, and so on.

- Warren
 
  • #3
This is amazing. I've just read that there's a recent proposal that Theta+(1540) can be a heptaquark (7 quarks)
http://arxiv.org/abs/hep-ph/0308073
 
  • #4
tetraquarks

The lightest potential members of the base scalar nonet, a0(980) and f0(980), have also been theorized as being tetraquarks or bound KKbar states. X(3872) is well above the DDbar threshold, after all. Ds+Ds- could be a possibility at that level, but DD* would be at 3871.2 MeV. That's just beautifully exact. Hope to hear about its quantum numbers soon, it would make great sense if it ends up being a scalar... no, never mind that (I would edit that part out, but that's too much momentary stupidity to just erase without feeling dishonest). If it is a DD* composite, and decays into pi+pi- + J/psi, then it has to be a vector particle. I'd be willing to bet (if I was a betting man) that its quantum numbers turn out to be either 0-(1--) or 1+(1--), the latter being rather unlikely. If the former, then it will probably be redesignated psi(3872) some time in the near future.

This brings up the decay mode there. B+ --> K+ + pi+pi- + J/psi with pi+pi- + J/psi coming from X(3872) decay. If X(3872) is indeed a bound DD* state coming from B+ (composite of u + -b), then it should follow the currently known models for B-decay into D-mesons, which are via b --> c + -u + d and b --> c + -c + s. The latter could account for the production of the K+ and a DD* bound state as long as an extra up/anti-up quark pair can be added into the decay. This gives u + -b --> (u + -s) + (c + -u + -c + u), which is B+ --> K+ + X(3872), leading to K+ + pi+pi- + J/psi. *(Just a note here, I had previously made a very dumb remark on how this transition could happen via a flavor-changing neutral current; after some thought I realized it was blatently wrong, and so I edited it out.)

As for theta+(1540), I can kind of see the K+N idea, but adding in the pion on top of that has got to be really tricky. Pions are so common in many kinds of light meson decay. So anyway, since its a stranged particle would it temporarily fall under the category of strange mesons when it hits the Particle Listings of the PDG in 2004?
 
Last edited:
  • #5


Originally posted by meteor
...Would be surprising if someone in the future discovers the "dodecaquark"
Isn't an alpha particle a dodecaquark?
 
  • #6
In a sense, possibly. But probably not by the technical definition. In order to have an alpha particle be a true dodecaquark, the protons and neutrons would have to sort of meld together, rather than simply orbit each other in a bound state such as the nucleus. Even if X(3872) is a DD* bound state, it is very likely that there is a semi-homogeneous mixture so that the two D-mesons would no longer be distinguishable until decay. Probing of X(3872) would not likely show two separate states bound together. The alpha particle, on the other hand, can still have the separate protons and neutrons within it distinguished easily if one was to probe it.
 
  • #7
What keeps the protons and neutrons all together? Isn't there an extremely strong electrostatic repulsion?
 
  • #8
The residual strong force is responsible for keeping them together. The residual strong force, unlike the strong force as mediated by gluons, acts on color neutral particles via meson exchange. Protons contain three valence quarks (uud) and a "sea" of quark-antiquark pairs, which can interact with other protons and neutrons. The neutrons are the same way, except that their valence quarks are (udd). Hyperons with valence quarks (uds) also experience the same behavior in hypernucleii. The residual strong force, mediated by mesons, has sufficient strength to hold nucleons of all kinds togther.
 
Last edited:
  • #9
By the way, is f0(600) still considered as the potential candidate for the scalar sigma-meson? In the nuclear theory I have read recently, most authors discard it, as they prefer to think in terms of "effective mesons", unrelated to the quark model.
 
  • #10
sigma meson

It's still in the listings. Although they keep changing their minds on the pole mass, and hence changing the name every few years. I would say that in general it is simply ignored; many physicists have simply decided to move on. Personally, I find it to be quite possibly an important factor in my own work. f0(600) may well be a member of a light scalar SU(3) nonet, as opposed to replacing f0(1370) as the lighter isosinglet in the 1(3)P0 multiplet. The possibility of having two scalar multiplets in the ground state is very interesting, and essentially indicates that the scalars occur at two poles. The well established members of the 1(3)P0 nonet in SU(3) are;

I = 0 f0(1370), f0(1710)
I = 1 a0(1450)
I = 1/2 K*0(1430)

The other potential members at this time are;

I = 0 f0(600), f0(980)
I = 1 a0(980)
I = 1/2 k(800)

It is interesting to note several things here:
1) f0(980) and a0(980) represent one of the largest breakings of isospin symmetry ever found (until this latest find of X(3872) out of KEK);
2) by taking the mass-squared pole positions of the isospin groups (i.e. f0(600) and f0(1370), f0(980) and f0(1710), a0(980) and a0(1450), k(800) and K*0(1430)), you find mass poles that fit in the standard resonance pattern of the 1P spin triplets, i.e. 1(3)P0 mesons (poles) are lighter than 1(3)P1 mesons, which are lighter than 1(3)P2 mesons, all in appropriate sized steps;
3) with a quick and crude calculation, the poles for the isoscalar members (I=0) occur just above 980 MeV (within about 78 MeV) and just above 1370 MeV (within about 24 MeV), possibly indicating that the f0(980) and f0(1370) are fairly pure states as they are, and placing them as the light and heavy isoscalars respectively of a scalar pole multiplet;
4) f0(980) and a0(980) have been postulated as possible candidates for KKbar bound states in the past, and now with the find of X(3872) as a possible D*Dbar candidate this possibility is all the more realistic.

Alot of the answers to the mystery of the scalars may in fact hinge on the interpretation of f0(600).
 

1. What is a tetraquark?

A tetraquark is a type of subatomic particle that is composed of four quarks. Quarks are fundamental particles that make up protons and neutrons, which are the building blocks of atoms. Tetraquarks are considered to be exotic particles as they are not a part of the standard model of particle physics.

2. How was the tetraquark found in Japan?

The tetraquark was discovered by scientists at the High Energy Accelerator Research Organization (KEK) in Tsukuba, Japan. The team used the Belle II experiment, which is a particle accelerator that collides electrons and positrons at high energies. By analyzing the data from these collisions, the scientists were able to identify the signature of the tetraquark.

3. Why is the discovery of a tetraquark significant?

The discovery of a tetraquark is significant because it provides further evidence for the existence of exotic particles and challenges our understanding of the fundamental building blocks of matter. It also opens up new possibilities for studying the strong nuclear force, which is responsible for holding particles together in the nucleus of an atom.

4. What are the potential applications of the tetraquark?

Currently, there are no known practical applications for the tetraquark. However, the discovery of this particle may lead to a better understanding of the strong nuclear force and could potentially have implications in fields such as nuclear physics and particle accelerator technology.

5. How does this discovery contribute to the field of particle physics?

The discovery of a tetraquark adds to the growing body of evidence for the existence of exotic particles beyond the standard model. It also expands our understanding of the strong nuclear force and provides new avenues for research in particle physics. This discovery contributes to the ongoing quest to understand the fundamental nature of the universe and its building blocks.

Similar threads

  • High Energy, Nuclear, Particle Physics
Replies
4
Views
2K
  • High Energy, Nuclear, Particle Physics
Replies
7
Views
1K
  • High Energy, Nuclear, Particle Physics
Replies
17
Views
6K
Replies
15
Views
4K
  • Astronomy and Astrophysics
Replies
9
Views
1K
  • Quantum Physics
Replies
1
Views
2K
  • Other Physics Topics
Replies
4
Views
3K
  • Atomic and Condensed Matter
Replies
2
Views
2K
Replies
2
Views
2K
  • MATLAB, Maple, Mathematica, LaTeX
Replies
20
Views
4K
Back
Top