How Do You Calculate Eigenvalues for Combined Spins in Quantum Mechanics?

In summary, the problem involves three spin particles fixed in space, with two of them having spin-1/2 and one having spin-1. The total spin operator for the particles is found by adding the individual spin operators, and the eigenvalues of ## \vec{S}^2 ## and their multiplicities are determined by decomposing the product space into irreps of ## SU(2) ##, where each irrep corresponds to a fixed value of spin ## s ##. The final representation space depends on the dimensions of the individual spin spaces, and the degeneracy of each eigenvalue includes the different values of ## m ## in ## \rvert s, m \rangle ##.
  • #1
Marvelant
7
0

Homework Statement


Given 3 spins, #1 and #3 are spin-1/2 and #2 is spin-1. The particles have spin operators ## \vec{S}_i, i=1,2,3 ##. The particles are fixed in space. Let ## \vec{S} = \vec{S}_1 + \vec{S}_2 + \vec{S}_3 ## be the total spin operator for the particles.
(ii) Find the eigenvalues of ## \vec{S}^2 ## and their multiplicities.

Homework Equations


## \vec{S}^2 \rvert s,m \rangle = s(s+1)\rvert s,m \rangle##, Spin matrices

The Attempt at a Solution


So, for each total spin ## s ## there are a number of combination of the ## s_i ## values associated with each spin, ## \{ \pm 1/2 \} ## for #1 and #3, ## \{ 0, \pm 1 \}## for #2. Then for each combination there are ## 2s_i+1 ## choices for ## m ## which yields ## (2s_1+1)(2s_2+1)(2s_3+1) ## possibilities
This comes down to eigenvalues
## 6 \hbar^2 ## with degeneracy 24
## 2 \hbar^2## with degeneracy 56
## 0 \hbar^2 ## with degeneracy 32
I am skeptical of these values and feel that there is probably a better way.
 
Last edited:
Physics news on Phys.org
  • #2
The representation space is 2x2x3=12-dimensional. Clearly no eigenvalue can have a multiplicity higher than 12.

How would you do this if there were only two spins? One spin 1/2 and one spin 1.
 
  • #3
Orodruin said:
The representation space is 2x2x3=12-dimensional. Clearly no eigenvalue can have a multiplicity higher than 12.

How would you do this if there were only two spins? One spin 1/2 and one spin 1.
I suppose all the different combinations would be ## \{ -1/2, 1/2 \} + \{ -1, 0, 1 \} = \{ -3/2, -1/2, 1/2, 3/2 \} ## which translates to ## s = \{ 1/2, 3/2 \}## with ## \vec{S}^2## eigenvalues of ## (3/4) \hbar^2, (15/4) \hbar^2##
 
  • #4
Marvelant said:
I suppose all the different combinations would be ## \{ -1/2, 1/2 \} + \{ -1, 0, 1 \} = \{ -3/2, -1/2, 1/2, 3/2 \} ## which translates to ## s = \{ 1/2, 3/2 \}## with ## \vec{S}^2## eigenvalues of ## (3/4) \hbar^2, (15/4) \hbar^2##
This notation is very confusing. Could you explain what you mean by it? The original basis is the direct product of a vector space of dimension 2 and one of dimension 3, the final vector space should therefore have dimension 6.

Also, how do you deduce the degeneracies of the eigenvalues?
 
  • #5
Orodruin said:
This notation is very confusing. Could you explain what you mean by it? The original basis is the direct product of a vector space of dimension 2 and one of dimension 3, the final vector space should therefore have dimension 6.

Also, how do you deduce the degeneracies of the eigenvalues?
Sorry for the confusing notation, all I meant was that I added together every possible pair, one element from each set, and discarded any repeated values.
I suppose discarding the repeated values was the wrong move, since the degeneracy would depend on them. So I'm going to guess degeneracies of the eigenvalues would be 4 for ## (3/4) \hbar^2 ## and 2 for ## (15/4) \hbar^2 ## but then wouldn't there also be degeneracy from the different values of ##m## in ## \rvert s, m \rangle ##?
 
  • #6
Marvelant said:
Sorry for the confusing notation, all I meant was that I added together every possible pair, one element from each set, and discarded any repeated values.
This will only give you the possible values of the ##z##-components, not the eigenvalues of the ##\vec S^2## operator. You have to decompose the product space into irreps of ##SU(2)##, i.e., multiplets with a fixed ##s##. Every state in such a multiplet will have the same values for the eigenvalue of ##\vec S^2##. What you have written down are the ##S_z## eigenvalues of all the states, not the spins of the irreps.
 
  • #7
As an example, consider the product space of two spin-1/2 irreps. The product space is then ##\newcommand{\ket}[1]{|#1\rangle} 2\otimes 2## spanned by the states ##\ket \pm \otimes \ket \pm##. Decomposing this into irreps leaves you with one singlet (spin-0) and one triplet (spin-1) representation. The triplet corresponds to ##s = 1## and is spanned by the symmetric states
$$
\ket + \otimes \ket +, \ \frac{1}{\sqrt{2}} \left( \ket + \otimes \ket - + \ket - \otimes \ket +\right), \ \ket - \otimes \ket -
$$
while the singlet with ##s = 0## is the anti-symmetric state ##(\ket + \otimes \ket - - \ket - \otimes \ket +)/\sqrt 2##.

In terms of the decomposition into irreps, you would write this as
$$
2\otimes 2 = 3 \oplus 1,
$$
i.e., the product space of two spin-1/2 irreps is decomposed into one triplet and one singlet representation. You can do the corresponding exercise both for ##2\otimes 3## and ##2\otimes 2 \otimes 3##.
 
  • #8
Orodruin said:
This will only give you the possible values of the ##z##-components, not the eigenvalues of the ##\vec S^2## operator. You have to decompose the product space into irreps of ##SU(2)##, i.e., multiplets with a fixed ##s##. Every state in such a multiplet will have the same values for the eigenvalue of ##\vec S^2##. What you have written down are the ##S_z## eigenvalues of all the states, not the spins of the irreps.
Can I generate these by applying the lowering operator to the highest ket like this?
$$
S_- \rvert 3/2,3/2 \rangle = (S_{1-}+S_{2-}) \rvert 1/2,1/2 \rangle_1 \rvert 1,1 \rangle_2
$$
 
  • #9
That will generate the states in the ##s = 3/2## irrep. Those will not be the full set of states. How do you plan to construct the remaining states and what ##s## will they correspond to?
 
  • #10
Orodruin said:
That will generate the states in the ##s = 3/2## irrep. Those will not be the full set of states. How do you plan to construct the remaining states and what ##s## will they correspond to?
I suppose I could do the same for ## \rvert 1/2,1/2 \rangle ##.
 
  • #11
Marvelant said:
I suppose I could do the same for ## \rvert 1/2,1/2 \rangle ##.
In order to do that you need to know which state is the ##|1/2,1/2\rangle## state. Which is it?
 
  • #12
Orodruin said:
In order to do that you need to know which state is the ##|1/2,1/2\rangle## state. Which is it?
Would it be a linear combination of ## \rvert 1/2,-1/2 \rangle_1 \rvert 1,1 \rangle_1 ## and ## \rvert 1/2,1/2 \rangle_1 \rvert 1,0 \rangle_1 ##?
 
  • #13
Marvelant said:
Would it be a linear combination of ## \rvert 1/2,-1/2 \rangle_1 \rvert 1,1 \rangle_1 ## and ## \rvert 1/2,1/2 \rangle_1 \rvert 1,0 \rangle_1 ##?
Yes, but you need to figure out which linear combination before you start applying ##S_-## to it. Otherwise you will get part of the ##s = 3/2## state in it as well.

To be honest, you do not really need to figure out exactly what the states are. What you need to figure out is which irreps are present in the products and what dimensions each irrep has. So, which are the irreps in the ##2 \otimes 3## product? What are their corresponding ##\vec S^2## eigenvalues and dimensions?
 
  • #14
Orodruin said:
Yes, but you need to figure out which linear combination before you start applying ##S_-## to it. Otherwise you will get part of the ##s = 3/2## state in it as well.

To be honest, you do not really need to figure out exactly what the states are. What you need to figure out is which irreps are present in the products and what dimensions each irrep has. So, which are the irreps in the ##2 \otimes 3## product? What are their corresponding ##\vec S^2## eigenvalues and dimensions?
I'm not confident enough in tensor products to work at that level, unfortunately.
 
  • #15
So instead figure out the eigenstates of ##\hat S^2## and the degeneracy of the corresponding eigenvalues, that will also work but it is a lot more work.
 

What is the concept of "The addition of 3 spins"?

The addition of 3 spins is a fundamental concept in quantum mechanics that describes the behavior of particles with spin, such as electrons, protons, and neutrons. It involves combining the spin states of three particles to determine the overall spin state of the system.

How is the addition of 3 spins calculated?

The addition of 3 spins is calculated using the Clebsch-Gordan coefficients, which are mathematical values that describe the possible combinations of spin states for a system of three particles. These coefficients are used in a specific formula to determine the overall spin state of the system.

What are the possible outcomes of adding 3 spins?

The possible outcomes of adding 3 spins are determined by the Clebsch-Gordan coefficients and can range from a total spin of 0 to 3. This means that the overall spin state of the system can be either completely aligned, completely anti-aligned, or somewhere in between.

How does the addition of 3 spins relate to quantum entanglement?

The addition of 3 spins is closely related to quantum entanglement, which is the phenomenon where particles become connected and can influence each other's behavior, regardless of the distance between them. The addition of 3 spins helps to explain the correlations between entangled particles and their spin states.

What real-world applications does the addition of 3 spins have?

The addition of 3 spins has many real-world applications, particularly in fields such as quantum computing, cryptography, and materials science. It helps scientists understand the behavior of particles with spin and can be applied to develop new technologies and improve existing ones.

Similar threads

  • Advanced Physics Homework Help
Replies
17
Views
1K
  • Advanced Physics Homework Help
Replies
3
Views
961
  • Advanced Physics Homework Help
Replies
1
Views
2K
  • Advanced Physics Homework Help
Replies
9
Views
861
Replies
8
Views
2K
  • Advanced Physics Homework Help
Replies
1
Views
912
  • Advanced Physics Homework Help
Replies
1
Views
2K
  • Advanced Physics Homework Help
Replies
14
Views
2K
Replies
17
Views
2K
  • Advanced Physics Homework Help
Replies
1
Views
2K
Back
Top