The Jacobian Matrix.

  • #1
Greetings all,

I hope someone out there in the vast hinterland of the internet can help.

I'm trying to calculate the lyapunov exponent for a system of differential equations. Now I can do this just fine for a system involving only first order derivatives such the Lorenz system, however, and this is the kicker, I'm trying to calculate it for a system involving 2nd and 1st order derivatives.

So my question, what would the jacobian be for a systems like this?

\begin{align*}
\ddot{y}_1+\alpha\dot{y}_1+\beta y_1&=\beta (w_{ee}S(y_2) -w_{ie}S(y_3) -w_{ie}S(y_4) )\\
\ddot{y}_2+\alpha\dot{y}_2+\beta y_2&=\beta (w_{ee}S(y_1) -w_{ie}S(y_3))\\
\ddot{y}_3+\alpha\dot{y}_3+\beta y_3&=\beta (w_{ei}S(y_1) +w_{ei}S(y_2) -w_{ii}S(y_4))\\
\ddot{y}_4+\alpha\dot{y}_4+\beta y_4&=\beta (w_{ei}S(y_1) -w_{ii}S(y_3))
\end{align*}

I initially thought you just rearranged it for y1ddot and then (in Matlab code) did something like this, but now i'm not so sure this is the right arrangement. I've looked everywhere I can think of but can't find any info.


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

a11=diff(y1dot,y1);
a12=diff(y1dot,y1dot);
a13=diff(y1dot,y2);
a14=diff(y1dot,y2dot);
a15=diff(y1dot,y3);
a16=diff(y1dot,y3dot);
a17=diff(y1dot,y4);
a18=diff(y1dot,y4dot);

a21=diff(y1ddot,y1);
a22=diff(y1ddot,y1dot);
a23=diff(y1ddot,y2);
a24=diff(y1ddot,y2dot);
a25=diff(y1ddot,y3);
a26=diff(y1ddot,y3dot);
a27=diff(y1ddot,y4);
a28=diff(y1ddot,y4dot);

%--------------------------------------------------------------------------

a31=diff(y2dot,y1);
a32=diff(y2dot,y1dot);
a33=diff(y2dot,y2);
a34=diff(y2dot,y2dot);
a35=diff(y2dot,y3);
a36=diff(y2dot,y3dot);
a37=diff(y2dot,y4);
a38=diff(y2dot,y4dot);

a41=diff(y2ddot,y1);
a42=diff(y2ddot,y1dot);
a43=diff(y2ddot,y2);
a44=diff(y2ddot,y2dot);
a45=diff(y2ddot,y3);
a46=diff(y2ddot,y3dot);
a47=diff(y2ddot,y4);
a48=diff(y2ddot,y4dot);

%--------------------------------------------------------------------------

a51=diff(y3dot,y1);
a52=diff(y3dot,y1dot);
a53=diff(y3dot,y2);
a54=diff(y3dot,y2dot);
a55=diff(y3dot,y3);
a56=diff(y3dot,y3dot);
a57=diff(y3dot,y4);
a58=diff(y3dot,y4dot);

a61=diff(y3ddot,y1);
a62=diff(y3ddot,y1dot);
a63=diff(y3ddot,y2);
a64=diff(y3ddot,y2dot);
a65=diff(y3ddot,y3);
a66=diff(y3ddot,y3dot);
a67=diff(y3ddot,y4);
a68=diff(y3ddot,y4dot);

%--------------------------------------------------------------------------

a71=diff(y4dot,y1);
a72=diff(y4dot,y1dot);
a73=diff(y4dot,y2);
a74=diff(y4dot,y2dot);
a75=diff(y4dot,y3);
a76=diff(y4dot,y3dot);
a77=diff(y4dot,y4);
a78=diff(y4dot,y4dot);

a81=diff(y4ddot,y1);
a82=diff(y4ddot,y1dot);
a83=diff(y4ddot,y2);
a84=diff(y4ddot,y2dot);
a85=diff(y4ddot,y3);
a86=diff(y4ddot,y3dot);
a87=diff(y4ddot,y4);
a88=diff(y4ddot,y4dot);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Jac=[(a11) (a12) (a13) (a14) (a15) (a16) (a17) (a18);
(a21) (a22) (a23) (a24) (a25) (a26) (a27) (a28);
(a31) (a32) (a33) (a34) (a35) (a36) (a37) (a38);
(a41) (a42) (a43) (a44) (a45) (a46) (a47) (a48);
(a51) (a52) (a53) (a54) (a55) (a56) (a57) (a58);
(a61) (a62) (a63) (a64) (a65) (a66) (a67) (a68);
(a71) (a72) (a73) (a74) (a75) (a76) (a77) (a78);
(a81) (a82) (a83) (a84) (a85) (a86) (a87) (a88);]
 

Answers and Replies

Related Threads on The Jacobian Matrix.

Replies
4
Views
3K
Replies
13
Views
8K
Replies
5
Views
1K
Replies
1
Views
3K
  • Last Post
Replies
3
Views
2K
  • Last Post
Replies
3
Views
12K
  • Last Post
Replies
5
Views
9K
  • Last Post
Replies
3
Views
3K
Top