If we have vect (u) which denotes an infinite-dimensional vector space of all vector fields on u. As infinitesimal elements of the continuous group of Diff(u) they form a Lie Algebra. We then can define the bracket of two vector fields in v and w. If in coordinates:(adsbygoogle = window.adsbygoogle || []).push({});

v = [tex]\sum_{i}[/tex]V^{i}[tex]\partial[/tex][tex]/[/tex][tex]\partial[/tex]X[tex]^{i}[/tex]

w = [tex]\sum_{j}[/tex]W^{j}[tex]\partial[/tex][tex]/[/tex] [tex]\partial[/tex]X[tex]^{j}[/tex]

the components of[v,w]

[v,w]:=[tex](\sum_{i,j}([/tex] [tex]V^{i}[/tex] [tex]\frac{d}{dx}[/tex][tex]X^{i}[/tex] [tex]W^{j}[/tex] - [tex]W^{i}[/tex] [tex]\frac{d}{dx}[/tex][tex]X^{i}[/tex] [tex]V^{j} )[/tex] [tex]\frac{d}{dx}[/tex]

if the definition is independent of the choice of coordinates is it bilinear by nature? if so it must be antisymmetric [v,w] = -[w,v];

therefore the jacobi identity would yield [v,[u,w]] = [[v,u],w] + [u, [v,w]]

how can i go about verifying this for a lie bracket?

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# The lie bracket.

**Physics Forums | Science Articles, Homework Help, Discussion**