If we have vect (u) which denotes an infinite-dimensional vector space of all vector fields on u. As infinitesimal elements of the continuous group of Diff(u) they form a Lie Algebra. We then can define the bracket of two vector fields in v and w. If in coordinates:(adsbygoogle = window.adsbygoogle || []).push({});

v = [tex]\sum_{i}[/tex]V^{i}[tex]\partial[/tex][tex]/[/tex][tex]\partial[/tex]X[tex]^{i}[/tex]

w = [tex]\sum_{j}[/tex]W^{j}[tex]\partial[/tex][tex]/[/tex] [tex]\partial[/tex]X[tex]^{j}[/tex]

the components of[v,w]

[v,w]:=[tex](\sum_{i,j}([/tex] [tex]V^{i}[/tex] [tex]\frac{d}{dx}[/tex][tex]X^{i}[/tex] [tex]W^{j}[/tex] - [tex]W^{i}[/tex] [tex]\frac{d}{dx}[/tex][tex]X^{i}[/tex] [tex]V^{j} )[/tex] [tex]\frac{d}{dx}[/tex]

if the definition is independent of the choice of coordinates is it bilinear by nature? if so it must be antisymmetric [v,w] = -[w,v];

therefore the jacobi identity would yield [v,[u,w]] = [[v,u],w] + [u, [v,w]]

how can i go about verifying this for a lie bracket?

**Physics Forums | Science Articles, Homework Help, Discussion**

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# The lie bracket.

**Physics Forums | Science Articles, Homework Help, Discussion**