Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The prime number theorem

  1. Sep 26, 2010 #1
    could someone please help me understand this proof given in an article by William Miller


    its supposed to follow from the prime number theorem that given,

    A(x) which is the sum of all primes less than or equal to x

    and theta(x) which is the sum of the log of all primes less than or equal to x

    A(x) ~ x^2/(2logx) and theta(x) ~ x

    the following identity is used, theta(x) = integral from 1 to x of log(t)d(pi(t))

    where pi(t) is the prime counting function. I don't understand why this is.

    Here ~ means asymptotic to i.e. lim n->infinity f(x)/g(x)=1

    Attached Files:

  2. jcsd
  3. Sep 26, 2010 #2
    pi(t) jumps by 1 when t is prime. Therefore log(t) d(pi(t)) contributes log(t) for prime integers and 0 for all other values of t.
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Similar Threads - prime number theorem Date
A Equation with three consecutive prime numbers Apr 11, 2016
Largest Prime Number Feb 6, 2013
A big number modulo a prime Dec 12, 2012
Is this a route to the prime number theorem? Oct 6, 2010
Prime number theorem Nov 9, 2008