Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

I The propagator

  1. Aug 1, 2017 #1
    I note the following:

    \begin{equation}

    \begin{split}

    \langle \vec{x}| \hat{U}(t-t_0) | \vec{x}_0 \rangle&=\langle \vec{x}| e^{-2 \pi i \frac{\mathcal{H}}{\hbar} (t-t_0)} | \vec{x}_0 \rangle

    \\

    &=e^{-2 \pi i \frac{\mathcal{H}}{\hbar} (t-t_0)} \delta(\vec{x}-\vec{x}_0)

    \end{split}

    \end{equation}


    Given:

    \begin{equation}

    \begin{split}

    \delta(\vec{x}-\vec{x}_0) &= \int_{-\infty}^{\infty} d\vec{k} e^{2 \pi i \vec{k}(\vec{x}-\vec{x}_0)}

    \end{split}

    \end{equation}


    Such that:

    \begin{equation}

    \begin{split}

    \langle \vec{x}| e^{-2 \pi i \frac{\mathcal{H}}{\hbar} (t-t_0)} | \vec{x}_0 \rangle&=e^{-2 \pi i \frac{\mathcal{H}}{\hbar} (t-t_0)} \int_{-\infty}^{\infty} d\vec{k} e^{2 \pi i \vec{k}(\vec{x}-\vec{x}_0)}

    \\

    &=\int_{-\infty}^{\infty} d\vec{k} e^{2 \pi i \vec{k}(\vec{x}-\vec{x}_0)} e^{-2 \pi i \frac{\mathcal{H}}{\hbar} (t-t_0)}

    \\

    &=\int_{-\infty}^{\infty} d\vec{k} e^{2 \pi i \left(\vec{k}(\vec{x}-\vec{x}_0)- \frac{\mathcal{H}}{\hbar} (t-t_0)\right)}

    \\

    &=\int_{-\infty}^{\infty} d\vec{k} e^{2 \pi i (t-t_0)\left(\vec{k}\frac{(\vec{x}-\vec{x}_0)}{(t-t_0)}- \frac{\mathcal{H}}{\hbar} \right)}

    \end{split}

    \end{equation}


    Given ##\vec{v}=\frac{(\vec{x}-\vec{x}_0)}{(t-t_0)}##:

    \begin{equation}

    \begin{split}

    \langle \vec{x}| e^{-2 \pi i \frac{\mathcal{H}}{\hbar} (t-t_0)} | \vec{x}_0 \rangle&=\int_{-\infty}^{\infty} d\vec{k} e^{2 \pi i (t-t_0)\left(\vec{k}\vec{v}- \frac{\mathcal{H}}{\hbar} \right)}

    \end{split}

    \end{equation}


    Given:

    \begin{equation}

    \begin{split}

    \frac{\mathcal{H}}{\hbar}&=\frac{T}{\hbar} + \frac{V}{\hbar}

    \end{split}

    \end{equation}


    Where:

    \begin{equation}

    \begin{split}

    \frac{T}{\hbar}&=\frac{\vec{p}^2}{2 m \hbar}

    \end{split}

    \end{equation}


    Given ##\vec{p}=\hbar\vec{k}##:

    \begin{equation}

    \begin{split}

    \frac{T}{\hbar}&=\frac{\hbar}{2 m }\vec{k}^2

    \end{split}

    \end{equation}


    Thus:

    \begin{equation}

    \begin{split}

    \frac{\mathcal{H}}{\hbar}&=\frac{\hbar}{2 m }\vec{k}^2 + \frac{V}{\hbar}

    \end{split}

    \end{equation}


    Such that:

    \begin{equation}

    \begin{split}

    \langle \vec{x}| e^{-2 \pi i \frac{\mathcal{H}}{\hbar} (t-t_0)} | \vec{x}_0 \rangle&=\int_{-\infty}^{\infty} d\vec{k} e^{2 \pi i (t-t_0)\left(\vec{k}\vec{v}- \frac{\hbar}{2 m }\vec{k}^2 - \frac{V}{\hbar} \right)}

    \end{split}

    \end{equation}


    Where:

    \begin{equation}

    \begin{split}

    \vec{k}\vec{v}&=\frac{m}{m}\vec{k}\vec{v}

    \\

    &=\frac{\vec{k}\vec{p}}{m}

    \\

    &=\frac{\hbar \vec{k}^2}{m}

    \end{split}

    \end{equation}


    Such that:

    \begin{equation}

    \begin{split}

    \langle \vec{x}| e^{-2 \pi i \frac{\mathcal{H}}{\hbar} (t-t_0)} | \vec{x}_0 \rangle&=\int_{-\infty}^{\infty} d\vec{k} e^{2 \pi i (t-t_0)\left(\frac{\hbar \vec{k}^2}{m}- \frac{\hbar}{2 m }\vec{k}^2 - \frac{V}{\hbar} \right)}

    \\

    &=\int_{-\infty}^{\infty} d\vec{k} e^{2 \pi i (t-t_0)\left(\frac{\hbar \vec{k}^2}{2m} - \frac{V}{\hbar} \right)}

    \\

    &=\int_{-\infty}^{\infty} d\vec{k} e^{2 \pi i (t-t_0)\left(\frac{T}{\hbar} - \frac{V}{\hbar} \right)}

    \end{split}

    \end{equation}


    Given the Lagrangian ##\mathcal{L}= T- V##:

    \begin{equation}

    \begin{split}

    \langle \vec{x}| e^{-2 \pi i \frac{\mathcal{H}}{\hbar} (t-t_0)} | \vec{x}_0 \rangle&=\int_{-\infty}^{\infty} d\vec{k} e^{2 \pi i (t-t_0)\left(\frac{\mathcal{L}}{\hbar} \right)}

    \end{split}

    \end{equation}

    I want to make sure that I am understanding this correctly. Is this correct? If not, where is my mistake?
     
  2. jcsd
  3. Aug 2, 2017 #2

    blue_leaf77

    User Avatar
    Science Advisor
    Homework Helper

    First I would like to say that the Hamiltonian operators appearing in the first and second line in eq. (1) are not really the same. In the first line the Hamiltonian is still in operator form while in the second the it's already expressed in position space. In equation (3), I don't think you can arbitrarily swap the order of the exponential containing ##x-x_0## and that containing ##H##. If the one with ##x-x0## follows the one with ##H## then it's supposed to be understood as ##\exp \left( 2\pi i H(t-t_0)/\hbar \right)## acting on ##\exp(ik(x-x_0))##.
     
  4. Aug 2, 2017 #3

    vanhees71

    User Avatar
    Science Advisor
    2016 Award

    It's not as simple since ##V## is a function of ##\hat{x}##. For the free particle you can of course simply insert a unit operator in terms of the completeness relation of momentum eigenstates (I set ##\hbar=h/2 \pi=1## for simplicity):
    $$\langle \vec{x}|\exp(-\mathrm{i} t \hat{\vec{p}^2}/(2m)|\vec{x}' \rangle=\int_{\mathbb{R}^3} \mathrm{d}^3 \vec{p} \langle \vec{x}|\exp(-\mathrm{i} t \hat{\vec{p}^2}/(2m)|\vec{p} \rangle \langle p|\vec{x}' \rangle=\int_{\mathbb{R}^3} \mathrm{d}^3 \vec{p} \frac{1}{(2 \pi)^3} \exp[-\vec{p}^2 t /(2m)] \exp(\mathrm{i} \vec{p}(\vec{x}-\vec{x}').$$
    Now you regularize the integral by making ##t \rightarrow t-\mathrm{i} \epsilon## with ##\epsilon>0##. Then you get a Gaussian integral which can be solved easily.

    For ##V \neq 0## this trick doesn't work anymore, and you have to use other techniques. To make contact with the action in Lagrange form the Feynman path-integral approach is a good one. You find a simple introduction in my QFT manuscript (also for non-relativistic QT in Chpt. 1):

    http://th.physik.uni-frankfurt.de/~hees/publ/lect.pdf
     
  5. Aug 2, 2017 #4
    I apologize for not seeing, but how does ##V = V(\vec{x})## change things?
     
  6. Aug 2, 2017 #5

    vanhees71

    User Avatar
    Science Advisor
    2016 Award

    You'd need to insert the more complicated complete set of energy eigenstates of the complete Hamiltonian including the potential, and it's usually not so simple to evaluate the corresponding sum/integral. It can be done, e.g., for the harmonic oscillator.
     
  7. Aug 2, 2017 #6
    Thank you for your reply. Your manuscript is very good.


    From your manuscript, equation 1.56, I extract the following term:

    \begin{equation}

    \begin{split}

    \text{exp}\left[-i\Delta t \sum_{k=1}^{N} \frac{\vec{p}_{k}^2}{2 m}+ V(\vec{x}_{k}) + i \sum_{k=1}^{N} \vec{p}_{k}(\vec{x}_{k+1}-\vec{x}_{k})\right]

    \end{split}

    \end{equation}


    For simplicity and the purposes of this discussion, I set ##N=1##, such that:

    \begin{equation}

    \begin{split}

    \text{exp}\left[-i\Delta t \left(\frac{\vec{p}_{1}^2}{2 m}+ V(\vec{x}_{1})\right) + i \vec{p}_{1}(\vec{x}_{2}-\vec{x}_{1})\right]&=\text{exp}\left[-i\Delta t \left(\frac{\vec{p}_{1}^2}{2 m}+ V(\vec{x}_{1})\right) + i \vec{p}_{1}\Delta t \frac{(\vec{x}_{2}-\vec{x}_{1})}{\Delta t}\right]

    \end{split}

    \end{equation}


    Given ##\vec{v}=\frac{(\vec{x}_{2}-\vec{x}_{1})}{\Delta t}##:

    \begin{equation}

    \begin{split}

    \text{exp}\left[-i\Delta t \left(\frac{\vec{p}_{1}^2}{2 m}+ V(\vec{x}_{1})\right) + i \vec{p}_{1}(\vec{x}_{2}-\vec{x}_{1})\right]&=\text{exp}\left[-i\Delta t \left(\frac{\vec{p}_{1}^2}{2 m}+ V(\vec{x}_{1})\right) + i \Delta t \vec{p}_{1} \vec{v}\right]

    \\

    &=\text{exp}\left[i\Delta t \left(\vec{p}_{1} \vec{v}-\frac{\vec{p}_{1}^2}{2 m}- V(\vec{x}_{1})\right) \right]

    \\

    &=\text{exp}\left[i\Delta t \left(\vec{p}_{1} \vec{v}\frac{m}{m}-\frac{\vec{p}_{1}^2}{2 m}- V(\vec{x}_{1})\right) \right]

    \\

    &=\text{exp}\left[i\Delta t \left(\frac{\vec{p}_{1}^2}{m}-\frac{\vec{p}_{1}^2}{2 m}- V(\vec{x}_{1})\right) \right]

    \\

    &=\text{exp}\left[i\Delta t \left(\frac{\vec{p}_{1}^2}{2 m}- V(\vec{x}_{1})\right) \right]

    \\

    &=\text{exp}\left[i\Delta t \left(\mathcal{L}\right) \right]

    \end{split}

    \end{equation}


    Which seems essentially the same as my derivation above.
     
  8. Aug 3, 2017 #7

    vanhees71

    User Avatar
    Science Advisor
    2016 Award

    Yes, it's essentially integrating out the momentum in the Hamiltonian version of the path integral (which must always be the starting point). Then, indeed, if the Hamiltonian is of this specific form, you get the Lagrangian version with the classical Lagrangian. If you have interactions involving the momenta (or velocities in the Lagrangian), you get something different when integrating out the momentum.
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?
Draft saved Draft deleted



Similar Discussions: The propagator
  1. The propagator (Replies: 2)

  2. Propagator operator (Replies: 1)

  3. Photon propagator (Replies: 0)

  4. Photon propagation (Replies: 35)

Loading...