1. Not finding help here? Sign up for a free 30min tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The Radius of Curvature

  1. Oct 19, 2011 #1
    1. The problem statement, all variables and given/known data

    Parallel light in air enters a transparent medium of refractive index 1.33 and is focused 35 mm behind the surface. Calculate the radius of curvature of the surface of the medium

    2. Relevant equations

    [itex]f = \frac{R}{2}[/itex]

    [itex]\frac{1}{f}=(n-1) \left( \frac{1}{R_1}-\frac{1}{R_2} \right)[/itex]

    3. The attempt at a solution

    The correct answer must be 8.68 mm, I can't see how they got this answer.

    We know that the focus is 35 mm, so if we use the equation

    [itex]R=2f=2 \times 35 = 70 \ mm[/itex]

    But this is not correct and it doesn't take into account the refractive index.

    So, I also tried using the lens-maker's equation:

    [itex]\frac{1}{35} = (1.33-1) \left( \frac{1}{R}- 0 \right) \implies R = 17.9[/itex]

    I wasn't sure what to use for the second radius so I used 0, and I didn't get the correct answer. So how can I get 8.68 mm?
     
  2. jcsd
  3. Oct 19, 2011 #2
    I don't think you understood the problem correctly. You have light in one medium entering another medium through a parabolic surface. Not sure the level of your class, but since it's posted in intro phys, I'll just give you the formula.

    [tex]F=n_ 2 R/(n_2-n_1)[/tex]
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook




Similar Discussions: The Radius of Curvature
  1. Radius of curvature (Replies: 5)

  2. Radius of Curvature (Replies: 1)

Loading...