- #1

disregardthat

Science Advisor

- 1,854

- 33

http://findarticles.com/p/articles/mi_m1200/is_n12_v133/ai_6519267

A quote from the article states:

How can this be?In 1983, Gerd Faltings, now at Princeton (N.J.) University, opened up a new direction in the search for a proof. As one consequence of his proof of the Mordell conjecture (SN: 7/23/83, p.58), he showed that if there are any solutions to Fermat's equations, then there are only a finite number of them for each value of n.

Suppose [tex]a_0, b_0[/tex] and [tex]c_0[/tex] are solutions to the equation [tex]a^n+b^n=c^n[/tex] for a specified n, i.e [tex]a_0^n+b_0^n=c_0^n[/tex]. But by multiplying by [tex]k^n[/tex] where k is a natural number larger than 1 yields [tex](a_0k)^n+(b_0k)^n=(c_0k)^n[/tex] which is a different solution. This is true for all values of k larger than 1, so I cannot see how the theorem is true.

Please clarify!