Theorems about average values

  • Thread starter Petar Mali
  • Start date
  • #1
290
0

Main Question or Discussion Point

[tex]\oint_{\Delta S}\vec{E}\cdot \vec{dS}=const \int_{\Delta_V}\rho dV[/tex]

[tex]\Delta S[/tex] surface which surround domain [tex]\Delta V[/tex].

[tex]\vec{E}(\vec{r},t)[/tex] - vector field

[tex]\rho(\vec{r},t)[/tex] - scalar field

Now in the book which I read they say we use average value theorem

and get

[tex]\oint_{\Delta S}\vec{E}\cdot \vec{dS}=const \overline{\rho}\Delta V[/tex]

Can you tell me something more about

[tex]\int_{\Delta_V}\rho dV=\overline{\rho}\Delta V[/tex]
 

Answers and Replies

  • #2
HallsofIvy
Science Advisor
Homework Helper
41,770
911
Well, there really isn't much to be said. The integral of a constant over a region is just that constant times the measure (length, area, or volume) of the region. Essentially you defining the average of a function to be that constant which, when integrated over the region, gives the same value as the integral integrated over the region.

It is just an extension of the average of a finite set of numbers: if the set of numbers is [itex]\{x_1, x_2, \cdot\cdot\cdot, x_n\}[/itex] then adding them gives [itex]x_1+ x_2+ \cdot\cdot\cdot+ x_n[/itex] and their average, [itex]\overline{x}[/itex] is the number such that [itex]\overline{x}+ \overline{x}+ \cdot\cdot\cdot+ \overline{x}= n\overline{x}= x_1+ x_2+ \cdot\cdot\cdot+ x_n[[/tex]. That is,
[itex]\overline{x}= \frac{x_1+ x_2+ \cdot\cdot\cdot+ x_n}{n}[/itex].
 
  • #3
290
0
Thanks! Idea is clear to me. But I have a trouble to determine when can I do that!

For example when can I say

[tex]\int^a_0f(x)dx=\overline{f}a[/tex]
?

From

[tex]
\oint_{\Delta S}\vec{E}\cdot \vec{dS}=const \overline{\rho}\Delta V
[/tex]

[tex]\frac{1}{\Delta V} \oint_{\Delta S}\vec{E}\cdot \vec{dS}=const \overline{\rho}[/tex]

[tex]lim_{\Delta V \rightarrow 0}\frac{1}{\Delta V} \oint_{\Delta S}\vec{E}\cdot \vec{dS}
=lim_{\Delta V \rightarrow 0}const \overline{\rho}[/tex]

[tex](div\vec{E})_M=(const \overline{\rho})_M[/tex]

where [tex]M[/tex] is some point in region which volume (measure) is [tex]\Delta V[/tex].

And if I use Gauss theorem I will get

[tex]div\vec{E}=const\rho[/tex]
 

Related Threads for: Theorems about average values

Replies
6
Views
2K
  • Last Post
Replies
3
Views
2K
Replies
2
Views
3K
  • Last Post
Replies
3
Views
2K
  • Last Post
Replies
10
Views
1K
  • Last Post
Replies
3
Views
20K
  • Last Post
Replies
1
Views
3K
  • Last Post
2
Replies
29
Views
5K
Top