(adsbygoogle = window.adsbygoogle || []).push({}); Thermodynamics--ideal gas tables

problem says:

6.25 employing the ideal gas model, determine the change in specific entropy between the indicated states, in kJ/kg K. Solve 2 ways: use the appropriate ideal gas table, and a constant specific heat from Table A-20.

(a) air, p1 = 100 kPa, T1 = 20°C → p2 = 100 kPa, T2 = 100°C

(b) air, p1 = 1 bar, T1 = 27°C → p2 = 3 bar, T2 = 377°C

(c) carbon dioxide, p1 = 150 kPa, T1 = 30°C, p2 = 300 kPa, T2 = 300°C

(d) carbon monoxide, T1 = 300K, v1 = 1.1 m3/kg → T2 = 500K, v2 = 0.75 m3/kg

(e) nitrogen, p1 = 2 Mpa, T1 = 800K → p2 = 1 Mpa, T2 = 300K

answers are:

A) 0.24289, 0.2431

B) 0.47632, 0.47684

C) 0.4769, 0.4862

D) 0.2701, 0.2696

E) -0.8373, -0.8389

i did part A fine and got the right asnwer. solving using the first method (appropriate ideal gas table)--which is table A22 in my book (fundamentals of thermodynamics edition 5). you just have to convert temp to kelvin and match it up with the corresponding "s" value. the exact values aren't on table so i had to interpolate. then i did s2-s1 and got the right answer. solving using the second method (Table A20--"ideal gas specific heats of some common gasses"), i used the temperatures to find the cp values. then i averaged the 2 cp values together and used the formula (delta)s=cp*ln(T2/T1). this gave me the right answer.

but...for part B, it is not constant pressure and it doesn't say if its constant volume or not, so i don't know how to use the specific heat table for this.

if you can help me.......thanks.

**Physics Forums - The Fusion of Science and Community**

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Thermodynamics-ideal gas tables

Loading...

Similar Threads - Thermodynamics ideal tables | Date |
---|---|

Carnot cycle - Zero Power Extremes | Jul 8, 2017 |

Computation of maximum pressure in heated closed vessel | Jun 1, 2017 |

How to design canal to reduce stream temperature? | May 17, 2017 |

Using the Ideal Gas Law | Dec 14, 2016 |

**Physics Forums - The Fusion of Science and Community**