1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Three-Phase system problem

  1. Apr 12, 2016 #1
    1. The problem statement, all variables and given/known data
    In the given AC circuit, electromotive forces form a symmetric and direct three-phase system.
    Angular frequency [itex]\omega[/itex], magnitudes [itex]U_{AB},U_{BC},U_{CA}=U[/itex],
    resistance [itex]R[/itex], inductance [itex]L[/itex] and coefficient of inductive coupling [itex]k\neq 1[/itex]
    are given.
    Find capacitance [itex]C[/itex] such that the three-phase generator develops only the active power and find that active power.

    2. The attempt at a solution
    [itex][/itex]
    Total active power is given by [tex]P=3\cdot\frac{\left(\frac{U}{\sqrt 3}\right)^2}{R}[/tex]
    where [itex]\frac{\left(\frac{U}{\sqrt 3}\right)^2}{R}[/itex] is the active power of one phase, and
    [itex]\frac{U}{\sqrt 3}[/itex] is the voltage of one phase.

    Generator needs to develop only the active power, so the reactive power must be zero,
    [tex]Q=\mathfrak{I}(\underline{U_{AB}}{\underline{I_1}}^{*}+\underline{U_{BC}}{\underline{I_2}}^{*}+\underline{U_{CA}}{\underline{I_3}}^{*})=0[/tex]

    [tex]L_{12}=+kL\Rightarrow \underline{U_{AB}}=j\omega L\underline{I_1}+j\omega kL\underline{I_2},\underline{U_{BC}}=j\omega L\underline{I_2}+j\omega kL\underline{I_1},\underline{U_{CA}}=\frac{\underline{I_3}}{j\omega C}[/tex]
    [tex]\Rightarrow \underline{I_1}=\frac{\underline{U_{AB}}-k\underline{U_{BC}}}{j\omega L(1-k^2)},\underline{I_2}=\frac{\underline{U_{BC}}-k\underline{U_{AB}}}{j\omega L(1-k^2)}, \underline{I_3}=j\omega C\underline{U_{CA}}[/tex]

    First, we find [itex]\underline{U_{AB}}{\underline{I_1}}^{*}[/itex].
    [tex]\underline{I_1}=\frac{\underline{U_{AB}}-k\underline{U_{BC}}}{j\omega L(1-k^2)}\cdot \frac{-j\omega L(1-k^2)}{-j\omega L(1-k^2)}=\frac{-j\omega L(1-k^2)\underline{U_{AB}}+j\omega L(1-k^2)k\underline{U_{BC}}}{{\omega}^2L^2(1-k^2)^2}=j\frac{k\underline{U_{BC}}-\underline{U_{AB}}}{\omega L(1-k^2)}[/tex]
    [tex]\Rightarrow \underline{{I_1}^{*}}=-j\frac{k\underline{U_{BC}}-\underline{U_{AB}}}{\omega L(1-k^2)}[/tex]

    [tex]\underline{U_{AB}}{\underline{I_1}}^{*}=-j\frac{kU^2-U^2}{\omega L(1-k^2)}=j\frac{U^2}{\omega L(1+k)}[/tex]

    We get [itex]\underline{U_{BC}}{\underline{I_2}}^{*}=\underline{U_{AB}}{\underline{I_1}}^{*}[/itex]

    [tex]\underline{U_{CA}}{\underline{I_3}}^{*}=-j\omega CU^2[/tex]

    Now, [tex]\underline{U_{AB}}{\underline{I_1}}^{*}+\underline{U_{BC}}{\underline{I_2}}^{*}+\underline{U_{CA}}{\underline{I_3}}^{*}=j\frac{U^2(2-{\omega}^2LC(1+k))}{\omega L(1+k)}[/tex]

    [tex]Q=\frac{U^2(2-{\omega}^2LC(1+k))}{\omega L(1+k)}[/tex]
    If [itex]Q=0[/itex], then [tex]C=\frac{2}{{\omega}^2L(1+k)}[/tex]

    In my book, it says that the solution is [tex]Q=U^2\left(\frac{2+k}{\omega L(1-k^2)}-\omega C\right)=0\Rightarrow C=\frac{2+k}{{\omega}^2L(1-k^2)}[/tex]

    Is it a mistake in the book, or in my solution?
     

    Attached Files:

  2. jcsd
  3. Apr 17, 2016 #2
    Thanks for the post! This is an automated courtesy bump. Sorry you aren't generating responses at the moment. Do you have any further information, come to any new conclusions or is it possible to reword the post?
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?
Draft saved Draft deleted



Similar Discussions: Three-Phase system problem
  1. Three-Phase systems (Replies: 11)

Loading...