1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Time-average energy density

  1. Nov 21, 2014 #1
    1. The problem statement, all variables and given/known data
    Given the energy density expression from Jackson
    [itex]\frac{1}{2}\big(\mathbf{E}\cdot\mathbf{D}+\mathbf{H}\cdot\mathbf{B}\big)[/itex] (Eq. 6.106)

    Show the missing steps to arrive at the time-averaged energy density
    [itex]\frac{1}{4}\big(\epsilon\mathbf{E}\cdot\mathbf{E}^*+\frac{1}{\mu}\mathbf{B}\cdot\mathbf{B}^*\big)[/itex] (Eq. 7.13)

    2. Relevant equations
    See problem above.
    [itex]\langle u \rangle_t=\frac{1}{T}\int_0^Tu(t) dt[/itex] (time-averaged quantity)

    3. The attempt at a solution
    [itex]\langle u \rangle_t=\frac{1}{T}\int_0^Tu(t) dt[/itex]
    [itex]\langle u \rangle_t=\frac{1}{T}\int_0^T \frac{1}{2}\big(\mathbf{E}\cdot\mathbf{D}+\mathbf{H}\cdot\mathbf{B}\big) dt[/itex]
    [itex]\langle u \rangle_t=\frac{1}{T}\int_0^T \frac{1}{2}\big(\mathbf{E}\cdot\epsilon\mathbf{E}+\frac{1}{\mu}\mathbf{B}\cdot\mathbf{B}\big) dt[/itex]

    [itex]\mathbf{E}=\mathcal{E}e^{ik\mathbf{\hat{n}}\cdot\mathbf{x}-i\omega t}[/itex]
    [itex]\mathbf{B}=\mathcal{B}e^{ik\mathbf{\hat{n}}\cdot\mathbf{x}-i\omega t}[/itex]

    [itex]\langle u \rangle_t=\frac{1}{T}\int_0^T \frac{1}{2}\big(\mathcal{E}e^{ik\mathbf{\hat{n}}\cdot\mathbf{x}-i\omega t}\cdot\epsilon\mathcal{E}e^{ik\mathbf{\hat{n}}\cdot\mathbf{x}-i\omega t}+\frac{1}{\mu}\mathcal{B}e^{ik\mathbf{\hat{n}}\cdot\mathbf{x}-i\omega t}\cdot\mathcal{B}e^{ik\mathbf{\hat{n}}\cdot\mathbf{x}-i\omega t}\big) dt[/itex]

    [itex]\langle u \rangle_t=\frac{\omega}{2\pi}\int_0^{\frac{2\pi}{\omega}} \frac{1}{2}\big(\mathcal{E}e^{ik\mathbf{\hat{n}}\cdot\mathbf{x}-i\omega t}\cdot\epsilon\mathcal{E}e^{ik\mathbf{\hat{n}}\cdot\mathbf{x}-i\omega t}+\frac{1}{\mu}\mathcal{B}e^{ik\mathbf{\hat{n}}\cdot\mathbf{x}-i\omega t}\cdot\mathcal{B}e^{ik\mathbf{\hat{n}}\cdot\mathbf{x}-i\omega t}\big) dt[/itex]

    [itex]T=\frac{2\pi}{\omega}[/itex]

    [itex]\langle u \rangle_t=\frac{\omega}{2\pi}\int_0^{\frac{2\pi}{\omega}} \frac{1}{2}\big(\mathcal{E}e^{ik\mathbf{\hat{n}}\cdot\mathbf{x}-i\omega t}\cdot\epsilon\mathcal{E}e^{ik\mathbf{\hat{n}}\cdot\mathbf{x}-i\omega t}+\frac{1}{\mu}\mathcal{B}e^{ik\mathbf{\hat{n}}\cdot\mathbf{x}-i\omega t}\cdot\mathcal{B}e^{ik\mathbf{\hat{n}}\cdot\mathbf{x}-i\omega t}\big) dt[/itex]

    [itex]\langle u \rangle_t=\frac{\omega}{2\pi}\int_0^{\frac{2\pi}{\omega}} \frac{1}{2}\big(e^{-2i\omega t}\big)\big(\mathcal{E}e^{ik\mathbf{\hat{n}}\cdot\mathbf{x}}\cdot\epsilon\mathcal{E}e^{ik\mathbf{\hat{n}}\cdot\mathbf{x}}+\frac{1}{\mu}\mathcal{B}e^{ik\mathbf{\hat{n}}\cdot\mathbf{x}}\cdot\mathcal{B}e^{ik\mathbf{\hat{n}}\cdot\mathbf{x}}\big) dt[/itex]

    Let [itex]A=\big(\mathcal{E}e^{ik\mathbf{\hat{n}}\cdot\mathbf{x}}\cdot\epsilon\mathcal{E}e^{ik\mathbf{\hat{n}}\cdot\mathbf{x}}+\frac{1}{\mu}\mathcal{B}e^{ik\mathbf{\hat{n}}\cdot\mathbf{x}}\cdot\mathcal{B}e^{ik\mathbf{\hat{n}}\cdot\mathbf{x}}\big)[/itex]

    [itex]\langle u \rangle_t=\frac{\omega}{2\pi}\int_0^{\frac{2\pi}{\omega}} \frac{1}{2}\big(e^{-2i\omega t}\big)A~dt[/itex]

    Question: Is the integral [itex] \int_0^{\frac{2\pi}{\omega}}e^{2i\omega t} dt [/itex] equal to zero?
    I get 1 -1 = 0, but then I cannot prove what I'm proving with this number. :(

    Thanks.
     
  2. jcsd
  3. Nov 21, 2014 #2

    mfb

    User Avatar
    2016 Award

    Staff: Mentor

    Yes it is (apart from a prefactor, it is equivalent to ##\int_0^{2\pi} e^{i t} dt##)

    Your expression for E should be real as there are no complex electric fields. If you take the calculate E everywhere, this problem will disappear.
     
  4. Nov 22, 2014 #3
    Actually, since it was due today, I kinda followed a solution in Wikipedia for Poynting vector (attached is the screenshot of Wikipedia solution. But I replaced the expression with the one used for energy density. In my new solution, the integral above was indeed zero, but there were new trems created by all the crossmultiplying done.I am not sure though if I did it right. But I did managed to arrive at the final expression. But thanks anyways. :)
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?
Draft saved Draft deleted