(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

Q) A child, Alice, on a playground merry-go-round can be modelled as a point mass m on a homogeneous horizontal disc of mass M and radius a. The disc rotates without friction about a vertical axis through its center. Alice clings to a straight railing that extends from the center of the disc to its perimeter. Alice's distance R(t) from the centre is a function of time determined by her muscles, while the angle θ between the railing and (say) the East is a dynamical variable

Find the Lagrangian for the system. Deduce from Lagrangian that pθ (momentum) is conserved

2. Relevant equations

The disc's (merry-go-round) momentum of inertia is 0.5ma^2

3. The attempt at a solution

In all honesty, I haven't been able to give a serious attempt at this. In lectures we have done no time-dependent examples. Obviously I have to use the formula L=T-V (kinetic - potential energy) however I don't know how I would begin to work out the kinetic energy. Should I start with working out the center of mass?

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Time-dependent Lagrangian problem

**Physics Forums | Science Articles, Homework Help, Discussion**