Hello!(adsbygoogle = window.adsbygoogle || []).push({});

Got a bit of an issue with thew two above mentioned equations about time.

From the Lorentz transformation t' = [t - (vx)/c^2]/lorentz factor, we get that the time read by a moving observer for an event in the stationary observer's frame of reference will always be slower (longer) because the denominator will always make the nominator grow when v < c.

Here comes proper time: t’^2- x’^2 = t^2 – x^2. From the moving observer frame of reference (x' = 0) we will get: t’^2= t^2 – x^2; t’^2 = t^2 – (vt)^2;t ’^2= t^2[1 – (v/c)^2]. Here comes the confusing part. This last equation reads that the proper time read by the moving observer for an event in the stationary frame, will be less than the proper time that the stationary observer is reading by a factor of [1 – (v/c)^2]. How can it be less? I thought no matter what frame of reference you relate to, you will always see another observer with dilated time.

Am I mixing things? Proper time is the time measured by a clock moving with the frame of reference, so by definition this time should always be the longest, which would mean the last equation makes sense.

Thanks in advance.

**Physics Forums | Science Articles, Homework Help, Discussion**

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# I Time dilation from Lorentz transf./ proper time equations

Have something to add?

Draft saved
Draft deleted

Loading...

**Physics Forums | Science Articles, Homework Help, Discussion**