How Can You Prove the Boundary of a Set in Topology?

In summary, the conversation discusses how to prove that the boundary of a set W is equal to the boundary of the intersection of W with two other sets, U and V. The conversation includes attempts at a solution, with one approach using the \supseteq part and the other approach using the \subseteq part. The conversation also discusses the role of disjoint sets and how it affects the proof. Ultimately, the conversation concludes that the boundary of W is equal to the union of the boundaries of W intersected with U and V.
  • #1
LMKIYHAQ
26
0

Homework Statement



Let X be a space. A[tex]\subseteq[/tex]X and U, V, W [tex]\in[/tex] topolgy(X). If W[tex]\subseteq[/tex] U[tex]\cup[/tex] V and U[tex]\cap[/tex] V[tex]\neq[/tex] emptyset,

Prove bd(W) = bd(W[tex]\cap[/tex]U) [tex]\cup[/tex] bd (W[tex]\cap[/tex] V)

Homework Equations


bd(W) is the boundary of W...
I think I have the "[tex]\supseteq[/tex]" part, but I am having trouble with the "[tex]\subseteq[/tex]" part.


The Attempt at a Solution


[tex]\supseteq[/tex]: Assume x [tex]\in[/tex] bd(W[tex]\cap[/tex]U) [tex]\cup[/tex] bd(W [tex]\cap[/tex]V). Show x[tex]\in[/tex] bd(W). Then x [tex]\in[/tex] bd(W[tex]\cap[/tex] U) or x[tex]\in[/tex] bd(W[tex]\cap[/tex] V). If x[tex]\in[/tex] bd (W[tex]\cap[/tex]U) means x is in bd(W) since W[tex]\cap[/tex]U[tex]\neq[/tex] emptyset and since W[tex]\subseteq[/tex] U[tex]\cup[/tex] V, some part of W[tex]\subseteq[/tex]U.
If x[tex]\in[/tex] bd(W[tex]\cap[/tex] V) then x[tex]\in[/tex] bd(W) since W[tex]\cap[/tex] V[tex]\neq[/tex] emptyset and since W[tex]\subseteq[/tex]U[tex]\cap[/tex] V, some part of W[tex]\subseteq[/tex] V.

Does this look ok for this part of the proof?

[tex]\subseteq[/tex]: Assume x[tex]\in[/tex]bd(W). Show x[tex]\in[/tex] bd(W[tex]\cap[/tex] U)[tex]\cup[/tex] (bd(W[tex]\cap[/tex] V). Since U and V are disjoint and W[tex]\subseteq[/tex]U[tex]\cup[/tex], W_U[tex]\subseteq[/tex]U or W_V[tex]\subseteq[/tex]V. Suppose W_U[tex]\subseteq[/tex]U then x[tex]\in[/tex]bd(W_U)[tex]\subseteq[/tex]bd(W_U[tex]\cap[/tex]U).Suppose W_V[tex]\subseteq[/tex] V then x[tex]\in[/tex] bd(W_V)[tex]\subseteq[/tex]bd(W_V[tex]\cap[/tex] V). Since x[tex]\in[/tex]bd(W)[tex]\subseteq[/tex]bd(W_U[tex]\cap[/tex]U) or bd(W_V[tex]\cap[/tex] V) then x[tex]\in[/tex] bd(W[tex]\cap[/tex] U)[tex]\cup[/tex] (bd(W[tex]\cap[/tex] V).

I am not sure if I need to specify what W_U and W_V are? or if this even works for this second part of the proof?
 
Last edited:
Physics news on Phys.org
  • #2
LMKIYHAQ said:

The Attempt at a Solution


[tex]\supseteq[/tex]: ... since W[tex]\cap[/tex]U[tex]\neq[/tex] emptyset
... since W[tex]\cap[/tex] V[tex]\neq[/tex] emptyset ...
Why is this the case?

OK, I think I see why you're having a problem:
Since U and V are disjoint
[itex]U \cap V \neq \emptyset[/itex] says that U and V are not disjoint.
 
  • #3
Thanks morphism. I tried to fix it. Am I on the right track?


[tex]\subseteq[/tex]: Assume x[tex]\in[/tex] bd(W). Show x[tex]\in[/tex] bd(W[tex]\cap[/tex] U)[tex]\cup[/tex] (bd(W[tex]\cap[/tex] V). Since U and V are not disjoint and W[tex]\subseteq[/tex]U[tex]\cup[/tex], W_U[tex]\subseteq[/tex]U or W_V[tex]\subseteq[/tex]V where W_U is the set of W in U and W_V is the set of W in V. Suppose W_U[tex]\subseteq[/tex]U then x[tex]\in[/tex]bd(W_U)[tex]\subseteq[/tex]bd(W_U[tex]\cap[/tex]U).Suppose W_V[tex]\subseteq[/tex] V then x[tex]\in[/tex] bd(W_V)[tex]\subseteq[/tex]bd(W_V[tex]\cap[/tex] V). Since x[tex]\in[/tex]bd(W)[tex]\subseteq[/tex]bd(W_U[tex]\cap[/tex]U) or bd(W_V[tex]\cap[/tex] V) then x[tex]\in[/tex] bd(W[tex]\cap[/tex] U)[tex]\cup[/tex] (bd(W[tex]\cap[/tex] V).
 
Last edited:
  • #4
I'm not sure I quite understand what W_U and W_V are supposed to denote.
 
  • #5
Ignore my last proof...I have been working on another approach to proving
[tex]\subseteq[/tex].

I am struggling but I think I am beginning to understand. Will you take a look?

Assume x[text]\in[/tex] bd(W). Show
x [tex]\in[/tex] bd(W[tex]\cap[/tex]U) [tex]\cup[/tex]
bd(W[tex]\cap[/tex]V). So x[tex]\in[/tex]cl(W)-int(W) and we know that W[tex]\subseteq[/tex]U[tex]\cap[/tex]V[tex]\neq[/tex] emptyset. Then x[tex]\in[/tex](bd(W)[tex]\cap[/tex]U) [tex]\cup[/tex](bd(W)[tex]\cap[/tex]V). Since bd(W)[tex]\subseteq[/tex] cl(W), x[tex]\in[/tex](cl(W)[tex]\cap[/tex]U) [tex]\cup[/tex](cl(W)[tex]\cap[/tex]V).

So x[tex]\in[/tex]cl(W[tex]\cap[/tex]U) [tex]\cup[/tex]cl(W[tex]\cap[/tex]V).
Since x[tex]\in[/tex]bd(W), x[tex]\in[/tex]bd(W[tex]\cap[/tex]U) [tex]\cup[/tex]bd(W[tex]\cap[/tex]V).
 
Last edited:

1. What is the topology boundary problem?

The topology boundary problem is a fundamental issue in topology, which is a branch of mathematics that studies the properties of shapes and spaces. It refers to the difficulty of defining a boundary for every shape or space, as some may have complex or infinite boundaries.

2. Why is the topology boundary problem important?

The topology boundary problem is important because it affects our understanding of the structure and properties of shapes and spaces. It allows us to classify different shapes and spaces into categories, which can have implications in various fields such as physics, engineering, and computer science.

3. How is the topology boundary problem solved?

The topology boundary problem is solved by using mathematical tools and techniques, such as the concept of dimension, to define and characterize boundaries. Various approaches, such as algebraic topology and differential topology, have been developed to address this problem.

4. What are some real-world applications of the topology boundary problem?

The topology boundary problem has many real-world applications, such as in the study of fluid dynamics, where it helps to understand the behavior of fluids around different shapes. It is also used in computer graphics and animation to create realistic 3D models of objects with complex boundaries.

5. Are there any unresolved issues with the topology boundary problem?

Yes, there are still some unresolved issues with the topology boundary problem, especially when dealing with highly complex shapes or spaces. The problem becomes even more challenging in higher dimensions, and mathematicians continue to work on developing new techniques and approaches to address these issues.

Similar threads

  • Calculus and Beyond Homework Help
Replies
8
Views
615
  • Calculus and Beyond Homework Help
Replies
20
Views
2K
  • Calculus and Beyond Homework Help
Replies
8
Views
1K
  • Calculus and Beyond Homework Help
Replies
5
Views
1K
  • Calculus and Beyond Homework Help
Replies
8
Views
995
  • Calculus and Beyond Homework Help
Replies
2
Views
928
  • Calculus and Beyond Homework Help
Replies
4
Views
1K
  • Calculus and Beyond Homework Help
Replies
6
Views
3K
  • Calculus and Beyond Homework Help
Replies
6
Views
1K
  • Linear and Abstract Algebra
Replies
9
Views
978
Back
Top