1. Not finding help here? Sign up for a free 30min tutor trial with Chegg Tutors
    Dismiss Notice
  2. Support PF! Reminder for those going back to school to buy their text books via PF Here!
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Topology Topology by Munkres

  1. Strongly Recommend

  2. Lightly Recommend

  3. Lightly don't Recommend

    0 vote(s)
  4. Strongly don't Recommend

  1. Jan 19, 2013 #1


    User Avatar
    Staff Emeritus
    Science Advisor
    Education Advisor
    2016 Award

    Table of Contents:
    Code (Text):

    [*] Preface
    [*] A Note to the  Reader
    [*] General Topology
    [*] Set Theory and Logic
    [*] Fundamental Concepts
    [*] Functions
    [*] Relation
    [*] The Integers and the Real Numbers
    [*] Cartesian Products
    [*] Finite sets
    [*] Countable and Uncountable Sets
    [*] The Principle of Recursive Definition
    [*] Infinite Sets and the Axiom of Choic
    [*] Well-ordered Sets
    [*] The Maximum Principle
    [*] Supplementary Exercises: Well-Ordering
    [*] Topological Spaces and Continuous Functions
    [*] Topological Spaces
    [*] Basis for a Topology
    [*] The Order Topology
    [*] The Product Topology on [itex]X\times Y[/itex]
    [*] Th  Subspace Topology
    [*] Closed Sets and Limit Points
    [*] Continuous Functions
    [*] The Product Topology
    [*] The Metric Topology
    [*] The Metric Topology (continued)
    [*] The Quotient Topology
    [*] Supplementary Exercises: Topological Groups
    [*] Connectedness and Compactness
    [*] Connected Spaces
    [*] Connected Subspaces of the Real Line
    [*] Components and Local Connectedness
    [*] Compact Spaces
    [*] Compact Subspaces of the Real Line
    [*] Limit point compactness
    [*] Local Compactness
    [*] Supplementary Exercises: Nets
    [*] Countability and Separation Axioms
    [*] The Countability Axioms
    [*] The Separation Axioms
    [*] Normal Spaces
    [*] The Urysohn Lemma
    [*] The Urysohn Metrization Theorem
    [*] The Tietze Extension Theorem
    [*] Imbeddings of Manifolds
    [*] Supplementary Exercises: Review of  the Basics
    [*] The Tychonoff Theorem
    [*] The Tychonoff Theorem
    [*] The stone-cech Compactification
    [*] Metrization Theorems and Paracompactness
    [*] Local Finiteness
    [*] The Nagata-Smirnov Metrization Theorem
    [*] Paracompactness
    [*] The Smirnov Metrization Theorem
    [*] Complete Metric Spaces and Function Spaces
    [*] Complete Metric Spaces
    [*] A Space-Filling Curve
    [*] Compactness in Metric Spaces
    [*] Pointwise and Compact Convergence
    [*] Ascoli's Theorem
    [*] Baire Spaces and Dimension Theory
    [*] Baire Spaces
    [*] A Nowhere-Differentiable Function
    [*] Introduction to Dimension Theory
    [*] Supplementary Exercises: Locally Euclidean Spaces
    [*] Algebraic Topology
    [*] The Fundamental Group
    [*] Homotopy of Paths
    [*] The Fundamental Group
    [*] Covering Spaces
    [*] The Fundamental Group of the Circle
    [*] Retractions and Fixed Points
    [*] The Fundamental Theorem of Algebra
    [*] The Borsuk-Ulam Theorem
    [*] Deformation Retracts and Homotopy Type
    [*] The Fundamental Group of [itex]S^n[/itex
    [*] Fundamental Groups of Some Surfaces
    [*]  Separation Theorems in the Plane
    [*] The Jordan Separation Theorem
    [*] Invariance of Domain
    [*] The Jordan Curve Theorem
    [*] Embedding Graphs in the Plane
    [*] The Winding Number of a Simple Closed Curve
    [*] The Cauchy Integral Formula
    [*] The Seifert-van Kampen Theorem
    [*] Direct Sums of Abelian Groups
    [*] Free Products of Groups
    [*] Free Groups
    [*] The Seifert-van Kampen Theorem
    [*] The Fundamental Group of a Wedge of Circles
    [*] Adjoining a Two-cell
    [*] The Fundamental Groups of the Torus and the Dunce Cap
    [*] Classification of surfaces
    [*] Fundamental Groups of Surfaces
    [*] Homology of Surfaces
    [*] Cutting and Pasting
    [*] The Classification Theorem
    [*] Constructing Compact Surfaces
    [*] Classification of Covering Spacs
    [*] Equivalence of Covering Spaces
    [*] The Universal Covering Space
    [*] Covering Transformations
    [*] Existence of Covering Spaces
    [*] Supplementary Exercises: Topological Properties and [itex]\pi_1[/itex]
    [*] Applications to Group Theory
    [*] Covering Spaces of a Graph
    [*] The Fundamental Group of a Graph
    [*] Subgroups of Free Groups
    [*] Bibliography
    [*] Index
    Last edited by a moderator: May 6, 2017
  2. jcsd
  3. Feb 4, 2013 #2
    This textbook is fantastic! It is well-written and very expository. The first four chapters, coupled with a few chapters from Part II (in particular chapters 9 and 11), provide you with an extremely solid foundation in general topology and a taste of algebraic topology.
    It is hard to find a weakness, but without a recent course in Analysis (I took Real Analysis 5 years ago), I would say that the two sections on the Metric Topology can be a bit tedious.To remedy this issue, I supplemented these sections with Bert Mendelson's coverage of metric spaces in his book "Introduction to Topology," which is also absolutely fantastic.
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Similar Discussions: Topology by Munkres
  1. Topology by munkres (Replies: 3)

  2. Munkres' Topology (Replies: 2)

  3. Topology for Analysis (Replies: 14)

  4. Topology books (Replies: 11)