Prove: If p:X->Y is a quotient map and if Z is a locally compact Hausdorff space, then the map m: p x i : X x Z -> Y x Z is a quotient map.(adsbygoogle = window.adsbygoogle || []).push({});

Note: i is the identity map on Z i assume. There is a few lines of hints talking about using the tube lemma and saturated neighborhoods which i dont feel like writing at the moment (see Munkres p.186). The main problem i have have with this is why not say: p x i (U x V) = p(U) x i(V), so (p x i)^-1 (U x V) = p^-1(U) x i^-1(V) (is this not true?). Because if it is true then the result seems trivial since p is a quotient map and the identity does nothing to change the openness of V. What am i missing?

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Topology question

**Physics Forums | Science Articles, Homework Help, Discussion**