If this is in the wrong section, please let me know. I will gladly re-post to the correct area.(adsbygoogle = window.adsbygoogle || []).push({});

Here is a real problem we face at work, and I would like some help quantifying it.

We have a round form, whose diameter is adjustable. Air cylinders are used to expand or contract the overall diameter of the form as needed.

This form receives several wraps of a product. The form rotates, and the wraps of product get wound around the form. Kind of like a garden hose carrier. The product translates along the cylindrical length of the form as the form rotates, so a single wrapped layer is applied to the form.

While the product is being wrapped around the form, there is about 1.25 kg of force (tension) on the band. If the force is too high, we experience "crush" of the form. Basically, the air cylinders are overcome by the compression, and they begin to allow the form to shrink in diameter. This is the problem we face. "Crush" is not desirable.

Here is the question:

How can I quantify the total compressive force against these cylinders?

I am able to know the number of wraps of product, and the linear tension of the product as it is applied to the form. I have been toying with the idea of simply multiplying the kg of force by the number of wraps, but that doesn't seem quite right.

Of course, it would be better if we didn't use air cylinders to begin with, but this is what we have, and we need to make it work. At least once we understand the total force we are dealing with, then we can begin to tackle the problem a little better.

Any help on this would be greatly appreciated.

Thanks.

Paul

**Physics Forums - The Fusion of Science and Community**

# Total force on a round form

Know someone interested in this topic? Share a link to this question via email,
Google+,
Twitter, or
Facebook

Have something to add?

- Similar discussions for: Total force on a round form

Loading...

**Physics Forums - The Fusion of Science and Community**