1. Not finding help here? Sign up for a free 30min tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Total ordered pairs (n,r)

  1. Sep 24, 2013 #1
    Calculation of Total no. of positive integer ordered pairs ##(n,r)## in ##\displaystyle \binom{n}{r} = 120##

    My Solution:: Clearly ##\displaystyle \binom{n}{r} = 120 \Rightarrow \binom{120}{1} = \binom{120}{119} = 120##

    So ##(n,r) = (120,1)\;\;,(120,119)## are positive integer ordered pairs which satisfy the given equation.

    Now we will calculate for other positive integer ordered pairs whether it is exists or not.

    So ##\displaystyle \binom{n}{r} = \frac{n!}{r! \cdot (n-r)!} = 2^3 \times 3 \times 5\Rightarrow \frac{n!}{r! .\cdot (n-r)! \cdot 5} = 2^3 \cdot 3##

    So Largest prime factors of ##120## is ##5##. So ##\displaystyle n\geq 5##

    Now for ##r##. Here ## 1 \leq r < 119## and ##r \leq \frac{n}{2}##

    So my Question is How can I calculate other positive ordered pairs.

    So please help me

    Thanks
     
  2. jcsd
  3. Sep 25, 2013 #2

    Office_Shredder

    User Avatar
    Staff Emeritus
    Science Advisor
    Gold Member

    You might want to start by asking if r=2, what can n be?
     
  4. Sep 25, 2013 #3
    To Office_Shredder would you like to explain me in Detail

    Thanks
     
  5. Sep 25, 2013 #4

    Office_Shredder

    User Avatar
    Staff Emeritus
    Science Advisor
    Gold Member

    Can you find n such that
    [tex] {n \choose 2} = 120[/tex]?

    It's a simple quadratic equation when you write it out, it shouldn't be too hard to do.
     
  6. Sep 25, 2013 #5
    To Office_Shredder

    ##\displaystyle \binom{n}{2}= 120\Rightarrow \frac{n.(n-1)}{2} = 120\Rightarrow n^2-n-240 = 0##


    after solving we get ## n = -15## and ##n = 16##

    So we can say ##\displaystyle \binom{n}{r} = 120## is satisfies for ##(16,2)##

    Now How can I calculate other ordered pairs

    and can we restrict positive integer value of ##n## and ##r##

    Thanks
     
  7. Sep 25, 2013 #6

    Office_Shredder

    User Avatar
    Staff Emeritus
    Science Advisor
    Gold Member

    OK, now can you solve it for r=3? It's a little harder (it's a cubic, so you probably want to take out a calculator and try a bunch of values - note that it will be for some value n smaller than 16!). How about r=4, r=5 etc.?
     
  8. Oct 15, 2013 #7
    Thanks Office_Shredder I did not understand how can i solve for cubic equation.
     
  9. Oct 15, 2013 #8

    Office_Shredder

    User Avatar
    Staff Emeritus
    Science Advisor
    Gold Member

    For r=3 you want to solve
    [tex] {n \choose 3} = 120 [/tex]
    which becomes
    [tex] \frac{n(n-1)(n-2)}{3!} = 120 [/tex]
    equivalently,
    [tex] n(n-1)(n-2) = 720 [/tex]

    Based on the r=2 case any solution of n has to be less than 16 (why?), so just take out a calculator and try n=1, n=2, etc. through n=15 and see if there are any possibilities (or factor 720 and see if you can write it as n(n-1)(n-2) for some n)

    Then you can similarly solve
    [tex] {n \choose 4} = 120 [/tex]
    and
    [tex] {n \choose 5} = 120 [/tex]
    and at some point your choices for n will be small enough that you will be able to conclude that there are no more solutions to be found (think about why this is, it's similar to the reason why for r=3 I know I can exclude n > 15)
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?
Draft saved Draft deleted



Similar Discussions: Total ordered pairs (n,r)
  1. N order derivates (Replies: 3)

  2. Ordered pair solutions (Replies: 7)

  3. Nested Ordered Pair (Replies: 2)

Loading...