The left-handed Weyl operator is defined by the ##2\times 2## matrix(adsbygoogle = window.adsbygoogle || []).push({});

$$p_{\mu}\bar{\sigma}_{\dot{\beta}\alpha}^{\mu} = \begin{pmatrix} p^0 +p^3 & p^1 - i p^2\\ p^1 + ip^2 & p^0 - p^3 \end{pmatrix},$$

where ##\bar{\sigma}^{\mu}=(1,-\vec{\sigma})## are sigma matrices.

One can use the sigma matrices to go back and forth between four-vectors and ##2\times 2## matrices:

$$p_{\mu} \iff p_{\dot{\beta}\alpha}\equiv p_{\mu}\bar{\sigma}^{\mu}_{\dot{\beta}\alpha}.$$

Given two four-vectors ##p## and ##q## written as ##2\times 2## matrices,

$$\epsilon^{\dot{\alpha}\dot{\beta}}\epsilon^{\alpha\beta}p_{\dot{\alpha}\alpha}q_{\dot{\beta}\beta} = 2p^{\mu}q_{\mu}.$$

Given a complex ##2\times 2## matrix ##\Lambda_{L}## with unit determinant, it can be shown that the transformation ##p_{\dot{\beta}\alpha} \rightarrow (\Lambda_{L}^{-1\dagger}p\Lambda_{L}^{-1})_{\dot{\beta}\alpha}## preserves the product ##\epsilon^{\dot{\alpha}\dot{\beta}}\epsilon^{\alpha\beta}p_{\dot{\alpha}\alpha}q_{\dot{\beta}\beta}##.

How does it then follow that ##\Lambda_{L}## is a Lorentz transformation? Do we have to use the fact that ##\epsilon^{\dot{\alpha}\dot{\beta}}\epsilon^{\alpha\beta}p_{\dot{\alpha}\alpha}q_{\dot{\beta}\beta} \sim p^{\mu}q_{\mu}##? What is the Lorentz transformation for ##p^{\mu}## due to the transformation ##\Lambda_{L}## for ##p_{\dot{\alpha}\alpha}##?

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# A Transformation of the spinor indices of the Weyl operator under the Lorentz group

Have something to add?

Draft saved
Draft deleted

**Physics Forums | Science Articles, Homework Help, Discussion**