Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Tribology:Numerical solution of finite Journal Bearing-Reynolds condition.

  1. May 5, 2010 #1

    I need help as to how to solve the Reynolds equation:
    [tex]\partial[/tex]h/[tex]\partial[/tex]t - [tex]\partial[/tex]((h3/12n)*[tex]\partial[/tex]p/[tex]\partial[/tex]x) - [tex]\partial[/tex]((h3/12n)*[tex]\partial[/tex]p/[tex]\partial[/tex]z) + [tex]\partial[/tex](U0*h*.5)/[tex]\partial[/tex]x + [tex]\partial[/tex](W0*h*.5)/[tex]\partial[/tex]z = 0
    For a finite journal bearing assuming [tex]\partial[/tex]h/[tex]\partial[/tex]t = 0
    And W0 = 0
    The eqn becomes :

    - [tex]\partial[/tex]((h3/12n)*[tex]\partial[/tex]p/[tex]\partial[/tex]x) - [tex]\partial[/tex]((h3/12n)*[tex]\partial[/tex]p/[tex]\partial[/tex]z) + [tex]\partial[/tex](U0*h*.5)/[tex]\partial[/tex]x = 0

    Plz help me as to how I can account the "Reynolds condition" :
    p(0) = 0
    p([tex]\theta[/tex]2) = 0
    [tex]\partial[/tex]p/[tex]\partial[/tex][tex]\theta[/tex]2 = 0
    in the numerical soultion.

    Also which discretization scheme would be better?
    (i-(1/2)), (i + (1/2)) and (j -(1/2)), (j + (1/2))
    i+1, i-1 and j+1, j-1

    {PS: i in X direction , j in Z direction, and h varies only in X direction}

    Plz help....:confused::confused::confused::confused:
    Last edited: May 5, 2010
  2. jcsd
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook

Can you offer guidance or do you also need help?