1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Tricky integral

  1. Oct 28, 2005 #1
    I'm trying to perform the following integral
    [tex]
    \pi \int\limits_0^\pi {e^{2x} } \left( {\frac{1}{2} - \frac{1}{2}\cos 2x} \right)dx
    [/tex]
    I split the integral and temporarely ignore the Pi so that I get
    [tex]
    \frac{1}{2}\int {e^{2x} dx} - \frac{1}{2}\int {e^{2x} \cdot \cos } \left( {2x} \right)dx
    [/tex]
    Now, using partial integration on the second part I get
    [tex]
    \int {e^{2x} \cdot \cos \left( {2x} \right)} dx = \frac{1}{2}e^{2x} \cdot \sin \left( {2x} \right) - \int {\sin \left( {2x} \right)} \cdot e^{2x} dx
    [/tex]
    Using partial integration again on the right integral I get
    [tex]
    \int {\sin \left( {2x} \right)} \cdot e^{2x} dx = - \frac{1}{2}e^{2x} \cdot \cos \left( {2x} \right) + \int {\cos \left( {2x} \right) \cdot e^{2x} dx}
    [/tex]
    I appears I haven't gotten anywhere, but I can now combine the last two lines and get
    [tex]
    \begin{array}{l}
    \int {\cos \left( {2x} \right) \cdot e^{2x} dx = \frac{1}{2}e^{2x} \cdot \sin \left( {2x} \right) - (\frac{1}{2}e^{2x} \cdot \cos \left( {2x} \right)} - \int {\cos \left( {2x} \right) \cdot e^{2x} \left. {dx} \right)} \\
    2\int {\cos \left( {2x} \right) \cdot e^{2x} dx = \frac{1}{2}e^{2x} } \cdot \sin \left( {2x} \right) - \frac{1}{2}e^{2x} \cdot \cos \left( {2x} \right) \\
    \int {\cos \left( {2x} \right)} \cdot e^{2x} dx = \frac{1}{4}e^{2x} \cdot \sin \left( {2x} \right) - \frac{1}{2}e^{2x} \cdot \cos \left( {2x} \right) \\
    \end{array}
    [/tex]
    Finally, multiplying in the Pi and the first initial half of the integral:
    [tex]
    \pi \cdot \left( {\frac{1}{4}e^{2x} - \frac{1}{2}\left( {\frac{1}{4}e^{2x} \cdot \sin \left( {2x} \right) - \frac{1}{4}e^{2x} \cdot \cos \left( {2x} \right)} \right)} \right)
    [/tex]
    Putting in Pi and 0 for x, and subtracting the two, I arrive at this expression:
    [tex]
    \frac{{3\pi \left( {e^{2\pi } - 1} \right)}}{8}
    [/tex]
    The problem is that this factor 3 shouldn't be there. If you just perform the initial integration on a calculator the answer is the same except for the factor 3, so where am I going wrong here?
     
    Last edited: Oct 28, 2005
  2. jcsd
  3. Oct 28, 2005 #2
    You messed up a couple minus signs. I'm going to copy and paste your code with corrections.
    [tex]
    \begin{array}{l}
    \int {\cos \left( {2x} \right) \cdot e^{2x} dx = \frac{1}{2}e^{2x} \cdot \sin \left( {2x} \right) - (-\frac{1}{2}e^{2x} \cdot \cos \left( {2x} \right)} + \int {\cos \left( {2x} \right) \cdot e^{2x} \left. {dx} \right)} \\
    2\int {\cos \left( {2x} \right) \cdot e^{2x} dx = \frac{1}{2}e^{2x} } \cdot \sin \left( {2x} \right) + \frac{1}{2}e^{2x} \cdot \cos \left( {2x} \right) \\
    \int {\cos \left( {2x} \right)} \cdot e^{2x} dx = \frac{1}{4}e^{2x} \cdot \sin \left( {2x} \right) + \frac{1}{4}e^{2x} \cdot \cos \left( {2x} \right) \\
    \end{array}
    [/tex]

    That should point you in right direction. Eventually, you should have something like this:

    [tex]
    \left.\frac{1}{4} \mathrm{e}^{2x} \right|_0^\pi - \left.\frac{1}{8}\mathrm{e}^{2x}\left(\cos 2x + \sin 2x\right)\right|_0^\pi
    [/tex]

    So, you'll get something: 2Y - Y = Y where Y is the answer you expect.
     
    Last edited: Oct 28, 2005
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook




Similar Discussions: Tricky integral
  1. Tricky problem (Replies: 7)

  2. Tricky equation (Replies: 13)

  3. Tricky substitution (Replies: 3)

Loading...