Tricky integral

  • Thread starter TSN79
  • Start date
417
0
I'm trying to perform the following integral
[tex]
\pi \int\limits_0^\pi {e^{2x} } \left( {\frac{1}{2} - \frac{1}{2}\cos 2x} \right)dx
[/tex]
I split the integral and temporarely ignore the Pi so that I get
[tex]
\frac{1}{2}\int {e^{2x} dx} - \frac{1}{2}\int {e^{2x} \cdot \cos } \left( {2x} \right)dx
[/tex]
Now, using partial integration on the second part I get
[tex]
\int {e^{2x} \cdot \cos \left( {2x} \right)} dx = \frac{1}{2}e^{2x} \cdot \sin \left( {2x} \right) - \int {\sin \left( {2x} \right)} \cdot e^{2x} dx
[/tex]
Using partial integration again on the right integral I get
[tex]
\int {\sin \left( {2x} \right)} \cdot e^{2x} dx = - \frac{1}{2}e^{2x} \cdot \cos \left( {2x} \right) + \int {\cos \left( {2x} \right) \cdot e^{2x} dx}
[/tex]
I appears I haven't gotten anywhere, but I can now combine the last two lines and get
[tex]
\begin{array}{l}
\int {\cos \left( {2x} \right) \cdot e^{2x} dx = \frac{1}{2}e^{2x} \cdot \sin \left( {2x} \right) - (\frac{1}{2}e^{2x} \cdot \cos \left( {2x} \right)} - \int {\cos \left( {2x} \right) \cdot e^{2x} \left. {dx} \right)} \\
2\int {\cos \left( {2x} \right) \cdot e^{2x} dx = \frac{1}{2}e^{2x} } \cdot \sin \left( {2x} \right) - \frac{1}{2}e^{2x} \cdot \cos \left( {2x} \right) \\
\int {\cos \left( {2x} \right)} \cdot e^{2x} dx = \frac{1}{4}e^{2x} \cdot \sin \left( {2x} \right) - \frac{1}{2}e^{2x} \cdot \cos \left( {2x} \right) \\
\end{array}
[/tex]
Finally, multiplying in the Pi and the first initial half of the integral:
[tex]
\pi \cdot \left( {\frac{1}{4}e^{2x} - \frac{1}{2}\left( {\frac{1}{4}e^{2x} \cdot \sin \left( {2x} \right) - \frac{1}{4}e^{2x} \cdot \cos \left( {2x} \right)} \right)} \right)
[/tex]
Putting in Pi and 0 for x, and subtracting the two, I arrive at this expression:
[tex]
\frac{{3\pi \left( {e^{2\pi } - 1} \right)}}{8}
[/tex]
The problem is that this factor 3 shouldn't be there. If you just perform the initial integration on a calculator the answer is the same except for the factor 3, so where am I going wrong here?
 
Last edited:
53
0
You messed up a couple minus signs. I'm going to copy and paste your code with corrections.
[tex]
\begin{array}{l}
\int {\cos \left( {2x} \right) \cdot e^{2x} dx = \frac{1}{2}e^{2x} \cdot \sin \left( {2x} \right) - (-\frac{1}{2}e^{2x} \cdot \cos \left( {2x} \right)} + \int {\cos \left( {2x} \right) \cdot e^{2x} \left. {dx} \right)} \\
2\int {\cos \left( {2x} \right) \cdot e^{2x} dx = \frac{1}{2}e^{2x} } \cdot \sin \left( {2x} \right) + \frac{1}{2}e^{2x} \cdot \cos \left( {2x} \right) \\
\int {\cos \left( {2x} \right)} \cdot e^{2x} dx = \frac{1}{4}e^{2x} \cdot \sin \left( {2x} \right) + \frac{1}{4}e^{2x} \cdot \cos \left( {2x} \right) \\
\end{array}
[/tex]

That should point you in right direction. Eventually, you should have something like this:

[tex]
\left.\frac{1}{4} \mathrm{e}^{2x} \right|_0^\pi - \left.\frac{1}{8}\mathrm{e}^{2x}\left(\cos 2x + \sin 2x\right)\right|_0^\pi
[/tex]

So, you'll get something: 2Y - Y = Y where Y is the answer you expect.
 
Last edited:

Related Threads for: Tricky integral

  • Last Post
Replies
10
Views
2K
  • Last Post
Replies
2
Views
4K
  • Last Post
Replies
3
Views
1K
  • Last Post
Replies
7
Views
1K
  • Last Post
Replies
13
Views
3K
  • Last Post
Replies
8
Views
5K
  • Last Post
Replies
5
Views
2K
  • Last Post
Replies
1
Views
1K

Hot Threads

Top