(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

[tex]\int[/tex][tex]\frac{dx}{1-tan^2(x)}[/tex]

2. Relevant equations

n/a

3. The attempt at a solution

Here's what I've tried:

u=tanx

x=arctanu

dx=[tex]\frac{du}{1+u^2}[/tex]

[tex]\int[/tex][tex]\frac{du}{(1+u^2)(1-u^2)}[/tex]

I then used partial fractions to get:

[tex]\int[/tex][tex]\frac{0.5}{1-u^2}[/tex]+[tex]\frac{0.5}{1+u^2}[/tex]du

[tex]\frac{1}{2}[/tex][tex]\int[/tex][tex]\frac{du}{1+u^2}[/tex]+[tex]\frac{1}{2}[/tex][tex]\int\frac{du}{1-u^2}[/tex]

The left side is simply arctanu while I used trig substitution to solve the right side

[tex]\frac{1}{2}[/tex]arctanu-[tex]\frac{1}{2}[/tex][tex]\int[/tex]csc[tex]\theta[/tex]d[tex]\theta[/tex]

[tex]\frac{1}{2}[/tex]arctan(tanx)+[tex]\frac{1}{2}[/tex]ln(csc[tex]\theta[/tex]+cot[tex]\theta[/tex]) + C

[tex]\frac{1}{2}[/tex]x + [tex]\frac{1}{2}[/tex]ln([tex]\frac{1}{\sqrt{1-u^2}}[/tex]+[tex]\frac{u}{\sqrt{1-u^2}}[/tex]) + C

With more re-substitution, I end up with:

[tex]\frac{1}{2}[/tex]x+[tex]\frac{1}{2}[/tex]ln(tanx+1)-[tex]\frac{1}{2}[/tex]ln([tex]\sqrt{1-tan(x)^2}[/tex]+C

For some reason, this is incorrect because when I try to take the derivative of that, I do not end up with [tex]\frac{1}{1-tan(x)^2}[/tex]

Is there something I'm doing wrong? What should I do?

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Trig integral help

**Physics Forums | Science Articles, Homework Help, Discussion**