1. Not finding help here? Sign up for a free 30min tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Trig integral

  1. Nov 8, 2006 #1
    I'm in the middle of solving [tex]\int\sqrt{x^2+9}dx[/tex] and I got it into the form of [tex]3\int\sec^3\theta d\theta[/tex], and I'm pulling a blank. Where does one begin? I could integrate by parts, setting u=sec(theta) and dv=sec^2(theta), but it's not getting me very far. Any suggestions?
  2. jcsd
  3. Nov 8, 2006 #2
    bummer. i had that and decided it didn't look appealing...

    OK, how's this?

    [tex]3\int\sec^3\theta d\theta[/tex]

    =[tex]3(\sec\theta\tan\theta-\int\tan^2\theta\sec\theta d\theta)[/tex]




    =[tex]3(\sec\theta\tan\theta-\int\sec^3\theta d\theta +\int\sec\theta d\theta)[/tex]

    Let I=[tex]\int\sec^3\theta d\theta[/tex]

    Then [tex]3I=3(\sec\theta\tan\theta-\int\sec^3\theta d\theta +\int\sec\theta d\theta)[/tex]

    The 3's cancel, so [tex]I+I=(\sec\theta\tan\theta+\int\sec\theta d\theta)[/tex]

    so [tex]I=(\sec\theta\tan\theta+\int\sec\theta d\theta)[/tex] and I can evaluate it from there (I hope).

    Thank you very much!

    Where did your post go, Courtigrad? I used it!
    Last edited: Nov 8, 2006
  4. Nov 9, 2006 #3


    User Avatar
    Science Advisor
    Homework Helper

    Try the substitution [itex] x=3\sinh t [/itex].

  5. Nov 9, 2006 #4


    User Avatar
    Staff Emeritus
    Science Advisor

    Here's how I would almost automatically do an integral like that. First convert secant to cosine
    [tex]\int sec^3 x dx= \int \frac{1}{cos^3(x)}dx[/itex]
    which is an odd power of cosine. "Take out" a cos(x) to use with dx. That is, multiply both numerator and denominator by cos(x)
    [tex]\int \frac{cos (x)}{cos^4(x)}dx= \int \frac{cos(x)dx}{(1- sin^2(x))^2}[/tex]
    Now let u= sin(x) so du= cos(x)dx
    [tex]\int \frac{du}{(1- u^2)^2}= \int \frac{du}{(1-u)^2(1+u)^2}[/tex]
    and now use partial fractions.
  6. Nov 9, 2006 #5
    Here's how I integrated the [tex]\int sec^3(x)dx[/tex] term.

    [tex]\int sec^3(x)dx[/tex]
    [tex]=\int sec^2(x)sec(x)[/tex]

    [tex]u = sec(x)[/tex]
    [tex]du = sec(x)tan(x) dx[/tex]

    [tex]dv = sec(x)^2(x)dx[/tex]
    [tex]v = tan(x) [/tex]

    [tex]\int sec^3(x)dx[/tex]
    [tex]= sec(x)tan(x) - \int tan(x)sec(x)tan(x) dx [/tex]
    [tex]= sec(x)tan(x) - \int tan^2(x)sec(x) dx [/tex]
    [tex]= sec(x)tan(x) - \int (sec^2(x) - 1)sec(x) dx [/tex]
    [tex]= sec(x)tan(x) - \int (sec^3(x) - sec(x) dx [/tex]
    [tex]= sec(x)tan(x) - \int (sec^3(x) + \int sec(x) dx [/tex]

    Now we have [tex]\int sec^3(x) [/tex] on both sides, so consolidate them.

    [tex] 2 \int sec^3(x) dx = sec(x)tan(x) + \int sec(x) dx [/tex]
    [tex] 2 \int sec^3(x) dx = sec(x)tan(x) + ln|sec(x) + tan(x)| + K [/tex]
    [tex] \int sec^3(x) dx = {{sec(x)tan(x) + ln|sec(x) + tan(x)|}\over{2}} + C [/tex]

    How did I get
    [tex] \int sec(x) dx = ln|sec(x) + tan(x)|[/tex]?

    Well, simplify this integral:

    [tex] \int sec(x) dx = \int sec(x)*{{sec(x)+tan(x)}\over{sec(x)+tan(x)}}[/tex]
    Last edited: Nov 9, 2006
  7. Nov 9, 2006 #6
    i would have used the substitution x = 3 tan(t)
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?

Similar Discussions: Trig integral
  1. Trig Integration (Replies: 2)

  2. Trig Integral (Replies: 7)

  3. Trig. Integral (Replies: 2)

  4. Trig Integral (Replies: 7)

  5. Integration with trig (Replies: 6)