Hey guys, I got a little problem for ya involving trig integration. I have listed my work below. My question is....well...the back of the book has a csc^2 (2x) in the absolute value at the end of the problem..and i cant even begin to fathom where they got it from. Here is the work..ill point out the disagreement from the answer key below(adsbygoogle = window.adsbygoogle || []).push({});

[tex]\int cot^3 (2x)dx[/tex]

[tex]\int cot^2 (2x) cot (2x)dx[/tex]

[tex]\int (csc^2 (2x) -1)cot (2x)dx[/tex]

[tex]\int (csc^2 (2x) cot (2x) - cot (2x))dx[/tex]

[tex]\int csc^2 (2x) cot (2x)dx - \int cot (2x)dx[/tex]

[tex]u=cot (2x)[/tex]

[tex]du= -2csc^2 (2x)dx[/tex]

[tex]\frac{-1}{2}du=csc^2 (2x)dx[/tex]

[tex]\frac{-1}{2} \int udu[/tex]

[tex]= \frac{1}{2}u^2[/tex]

[tex]= \frac{-1}{4}cot^2 (2x)[/tex]

[tex]u=2x[/tex]

[tex]du=2dx[/tex]

[tex]\frac{1}{2}du = dx[/tex]

[tex]= \frac {1}{2} \ln | \sin (2x) |[/tex]

rewrite and move the negative to an exponent using properties of natural log..its stupid but thats how the textbook has the answer

[tex] \frac{-1}{4} cot^2 (2x) + \frac{1}{2} \ln (sin (2x))^-1[/tex]

switch them around so the negative isnt sticking out in front

rewrote inverse sin as csc and factored out 1/4

[tex]\frac{1}{4}(2 \ln |csc (2x) | - cot^2 (2x))[/tex]

Heres the problem: the book writes it as:

[tex]\frac{1}{4}(2 \ln |csc^2 (2x) | - cot^2 (2x))[/tex]

notice the csc^2 up there...cant figure it out!

mrbill

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Trig integration problem

**Physics Forums | Science Articles, Homework Help, Discussion**