(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

[tex]\int\frac{dx}{\sqrt{x^2 + 16}}[/tex]

2. Relevant equations

[tex]x = 4\tan\theta[/tex]

[tex]dx = 4\sec^2\theta \ d\theta[/tex]

3. The attempt at a solution

[tex]\int\frac{4\sec^2\theta}{\sqrt{16\tan^2\theta + 16}}\ d\theta[/tex]

[tex]\int\frac{4\sec^2\theta}{\sqrt{16(\tan^2\theta + 1)}}\ d\theta[/tex]

[tex]\int\frac{4\sec^2\theta}{4\sec\theta}\ d\theta[/tex]

[tex]\int\sec\theta\ d\theta[/tex]

How do I reduce past this step?

Integration by parts returns me to [tex]\int\sec\theta\ d\theta[/tex]

The answer at the back of the book is as follows: [tex]\ln(\sqrt{x^2 + 16} + x) + C[/tex]

Thanks.

EDIT: notational mistakes corrected.

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Trig Substitution

**Physics Forums | Science Articles, Homework Help, Discussion**