- #1

gigi9

- 40

- 0

I'm ot sure how to dothis problem below..

1) indefinite integral dx/(x^3sqrt(x^2-a^2))

2) indefinite integral (1-4x^2)^(3/2)dx

How to use integration by part for

indefinite integral of x*inverse tan(x) dx.

You are using an out of date browser. It may not display this or other websites correctly.

You should upgrade or use an alternative browser.

You should upgrade or use an alternative browser.

- Thread starter gigi9
- Start date

- #1

gigi9

- 40

- 0

I'm ot sure how to dothis problem below..

1) indefinite integral dx/(x^3sqrt(x^2-a^2))

2) indefinite integral (1-4x^2)^(3/2)dx

How to use integration by part for

indefinite integral of x*inverse tan(x) dx.

- #2

PrudensOptimus

- 641

- 0

#1: It is the ∫ Sec^{-1}x * x^{-2} dx.

Use parts formula: let u = Sec^{-1}, du = x'/|x|sqrt(x^2 - a^2) where a = 1. dv = x^{-2} dx, v = -x^-1.

The answer? I'm not sure, but out of scratch i got -sec^-1x/x + 2sqrt(x^6 - x^4)/6x^5 - 4x^3 + C = -Cosx/x - sinx * x^3/3

Use parts formula: let u = Sec

The answer? I'm not sure, but out of scratch i got -sec^-1x/x + 2sqrt(x^6 - x^4)/6x^5 - 4x^3 + C = -Cosx/x - sinx * x^3/3

Last edited:

- #3

HallsofIvy

Science Advisor

Homework Helper

- 43,021

- 970

sin

sin(θ)= √(1- cos

sec

sec(θ)= √(1+ tan

tan

tan(θ)= √(sec

When you see something like ∫dx/(x

a√((x/a)

x/a= sec(θ) (0r x= a sec(θ)) will work!

Doing that, √(x

Also, x

The entire integral becomes ∫(a sec(θ)tan(θ)dθ/(a

= (1/a

= (1/a

which can be done by using the trig identity:

cos

- #4

phoenixthoth

- 1,605

- 2

Share:

- Last Post

- Replies
- 4

- Views
- 459

- Last Post

- Replies
- 9

- Views
- 447

- Last Post

- Replies
- 1

- Views
- 490

- Last Post

- Replies
- 4

- Views
- 2K

- Last Post

- Replies
- 3

- Views
- 1K

- Last Post

- Replies
- 2

- Views
- 1K

- Last Post

- Replies
- 5

- Views
- 929

- Last Post

- Replies
- 1

- Views
- 875

MHB
11 trig integral

- Last Post

- Replies
- 1

- Views
- 990

- Last Post

- Replies
- 5

- Views
- 236