1. PF Contest - Win "Conquering the Physics GRE" book! Click Here to Enter
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Trigonometric integral

  1. Mar 18, 2010 #1
    1. The problem statement, all variables and given/known data

    [tex]\int\frac{1}{t^3\sqrt{t^2-1}}dt[/tex] with limits of integration [tex][\sqrt{2}, 2][/tex]

    2. Relevant equations

    3. The attempt at a solution

    Using trig. sub, I have [tex]sec \theta=t[/tex]

    [tex]dt=sec \theta tan \theta d \theta[/tex]

    [tex]\int\frac{1}{t^3\sqrt{t^2-1}}dt[/tex] with limits of integration [tex][\sqrt{2}, 2][/tex]

    [tex]=\int\frac{sec \theta tan\theta d \theta}{(sec \theta)^3\sqrt{(sec \theta)^2-1}}[/tex]

    [tex]=\int\frac{tan \theta d \theta}{(sec \theta)^2\sqrt{(sec \theta)^2-1}}[/tex]

    [tex]=\int\frac{tan \theta d \theta}{(sec \theta)^2\sqrt{(tan \theta)^2}}[/tex]

    [tex]=\int\frac{tan \theta d \theta}{(sec \theta)^2tan \theta}[/tex]

    [tex]=\int\frac{d \theta}{(sec \theta)^2}[/tex]

    [tex]=\int\cos \theta^2 d\theta[/tex]

    [tex]=\int\frac{1+cos \theta}{2} d\theta[/tex]

    [tex]=\int\frac{1}{2}+\frac{cos \theta}{2} d\theta[/tex]

    [tex]=\frac{1}{2}\int d \theta +\frac{1}{2}\int cos \theta d \theta[/tex]

    [tex]=\frac{1}{2} \theta | +\frac{1}{2}sin \theta |[/tex]

    [tex]=\frac{1}{2}arcsec t +\frac{1}{2}t[/tex] with limits [tex][\sqrt{2},

    [tex]=\frac{1}{2}[arcsec (2)-arcsec (\sqrt{2})]+\frac{1}{2}[2-\sqrt{2}][/tex]

    I need to get to the answer: [tex]\frac{\pi}{24}+\frac{\sqrt{3}}{8}-\frac{1}{4}[/tex]. I don't see anything wrong up to this point so I guess my question is more of an algebra question, but how could I arrive at the stated answer?
  2. jcsd
  3. Mar 18, 2010 #2


    User Avatar
    Science Advisor
    Homework Helper
    Gold Member

    [tex]\cos^2\theta = \frac{1 + \cos{(2 \theta})}{2}[/tex]
  4. Mar 19, 2010 #3
    That was a silly mistake.

    Alright, so:

    [tex]\int (cos \theta)^2 d\theta[/tex]

    [tex]=\int \frac{1+cos(2\theta)}{2} d\theta[/tex]

    [tex]=\frac{1}{2}\int d\theta+\frac{1}{2}\int cos(2\theta)d\theta[/tex]

    [tex]=\frac{1}{2}\theta| +\frac{1}{2}\frac{sin(2\theta)}{2}|[/tex]

    [tex]=\frac{1}{2}\theta| +\frac{1}{4}sin(2\theta)|[/tex]

    [tex]=\frac{1}{2}\theta| +\frac{1}{4}(2sin\theta cos\theta)|[/tex]

    [tex]=\frac{1}{2}arcsin (t)| +\frac{1}{2}(\frac{t^2-1}{t})(\frac{1}{t})|[/tex]

    [tex]=\frac{1}{2}arcsin (t)| +\frac{1}{2}(\frac{t^2-1}{t^2})|[/tex]

    [tex]=\frac{1}{2}arcsin (t)| +\frac{1}{2}(1-\frac{1}{t^2})|[/tex]

    with limits of integration [tex][\sqrt{2}, 2][/tex]

    [tex]=\frac{1}{2}(arcsin(2)-arcsin(\sqrt{2})) +\frac{1}{2}[(1-\frac{1}{2^2})-(1-\frac{1}{\sqrt{2}^2})[/tex]

    [tex]=\frac{1}{2}(arcsin(2)-arcsin(\sqrt{2})) +\frac{1}{2}[(1-\frac{1}{4})-(1-\frac{1}{2})][/tex]

    [tex]=\frac{1}{2}(arcsin(2)-arcsin(\sqrt{2})) +\frac{1}{2}[(1-\frac{1}{4})-(1-\frac{1}{2}})][/tex]

    [tex]=\frac{1}{2}(arcsin(2)-arcsin(\sqrt{2})) +\frac{3}{8}-\frac{1}{4}[/tex]

    I'm not sure if this is correct, but how do I deal with the arcsin values since they aren't in the domain of the standard arcsin function? Lastly, how would I algebraically convert this to

  5. Mar 19, 2010 #4


    User Avatar
    Homework Helper

    You don't have to go through all this drama. You know that t=sec(theta), so cos(theta)=1/t. Just use this to convert the limits of integration to theta.
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook