1. Not finding help here? Sign up for a free 30min tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Trigonometric substitution

  1. Sep 30, 2007 #1

    tony873004

    User Avatar
    Science Advisor
    Gold Member

    This is an example from the book. Evaluate [tex]
    \int {\frac{{\sqrt {9 - x^2 } }}{{x^2 }}dx}
    [/tex]

    I understand all the steps that get me up to [tex] = - \cos \theta \, - \theta \, + C[/tex]

    Then the book goes on to explain:
    "Since this is an indefinate integral, we must return to the original variable x. This can be done either by using trig identities to express cot theta in terms of sin theta=x/3 or by drawing a diagram, as in Fig. 1, where theta is intrepreted as an angle of a right triangle. Since sin theta = x/3....."

    Where does this x/3 come from? The steps that follow make sense, but how did we know to just pull an x/3 out of the air and start using it?


    Applying this to a homework question [tex]\int_{}^{} {x^3 \sqrt {9 - x^2 } } dx[/tex] I come up with [tex]243\left( {\frac{{\cos ^5 \theta }}{5} - \frac{{\cos ^3 \theta }}{3}} \right) + C[/tex]

    Now, switching it back to x, I'm going to guess that [tex]{\sqrt {9 - x^2 } }[/tex] becomes the adjacent side of my triangle, but for no good reason other than the example of the book pulled the sqrt() out of the original equation and did the same.

    I just don't get this triangle stuff. The lecture didn't do it for me, and the book's explanation doesn't do it for me either >:-(
    1. The problem statement, all variables and given/known data



    2. Relevant equations



    3. The attempt at a solution
     
  2. jcsd
  3. Oct 1, 2007 #2

    VietDao29

    User Avatar
    Homework Helper

    Nope, in the early steps of the solution, the author used the substitution:

    [tex]x = 3 \sin \theta[/tex], so, rearrange it a bit, we'll have: [tex]\sin \theta = \frac{x}{3}[/tex]


    Ok, so far, so good.

    Well, no, you have:
    [tex]3 \sin \theta = x, \quad \theta \in \left[ -\frac{\pi}{2} ; \ \frac{\pi}{2} \right][/tex]

    [tex]\Rightarrow \sin \theta = \frac{x}{3}[/tex]

    We'll now try to express cos(theta) in terms of x, since we have: [tex]\theta \in \left[ -\frac{\pi}{2} ; \ \frac{\pi}{2} \right][/tex], that means theta is in the first, and forth quadrant. So, it's cosine value will be positive.

    Pythagorean Theorem states that: [tex]\cos ^ 2 \theta + \sin ^ 2 \theta = 1[/tex], so:

    [tex]\Rightarrow \cos \theta = \sqrt{1 - \sin ^ 2 \theta} = \sqrt{1 - \frac{x ^ 2}{9}}[/tex].

    Now, sub this to the expression above, and it's done.

    Can you get it? Is it clear? :)
     
  4. Oct 1, 2007 #3

    HallsofIvy

    User Avatar
    Staff Emeritus
    Science Advisor

    You keep avoiding mentioning the original substitution: [itex]3 sin(\theta)= x[/itex] or [itex]sin(\theta)= x/3[/itex]!
    You solution involves [itex]cos(\theta)[/itex]. In order to convert back to the original x, you need to figure out what [itex]cos(\theta)[/itex] is from knowing what [itex]sin(\theta)[/itex] is. Since sine is defined as "opposite side divided by hypotenuse", imagine (or better draw) a right triangle with "opposite side" of length x and "hypotenuse" of length three. You can use the Pythagorean theorem to find that the length of the "near side" is [itex]\sqrt{9- x^2}[/itex] and, since cosine is "near side divided by hypotenuse", [itex]cos(\theta)= \sqrt{9-x^2}/3[/itex] which could also be written [itex]\sqrt{1- x^2/9}[/itex].
     
  5. Oct 1, 2007 #4

    tony873004

    User Avatar
    Science Advisor
    Gold Member

    Thanks for the replies. It makes a lot more sense now :)
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?



Similar Discussions: Trigonometric substitution
Loading...