The voltage E applied to the sending end of a high-pressure transmitting line is connected to the voltage e at the receiving end by the equation(adsbygoogle = window.adsbygoogle || []).push({});

E^2=(e*cos(x) + a)^2 + (e*sin(x) + b)^2, where a and b are constants. Expand the right-hand side of the equation and by expressing a*cos(x) + b*sin(x) in the form R*cos(x + alpha) show that the maximum and minimum values of R, as x varies, are e +/-sqr(a^2 + b^2)? On expanding I get the following:

E^2 = e^2*((cos(x))^2 + (sin(x))^2) + a^2 + b^2 + 2*e*(a*cos(x) + b*sin(x))

E^2 = e^2 + a^2 + b^2 + 2*e*sqr(a^2 + b^2)*(cos(alpha)*cos(x) + sin(alpha)*sin(x)); where,

cos(alpha) = a/sqr(a^2 + b^2), and sin(alpha) = b/sqr(a^2 + b^2), and tan(alpha) = b/a. Therefore

E^2 = e^2 + a^2 + b^2 +2*e*sqr(a^2 + b^2)(cos(x - alpha)), so I get R = 2*e*sqr(a^2 + b^2) not what it is claimed above. What is the next step? Many thanks.

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Trigonometry question

**Physics Forums | Science Articles, Homework Help, Discussion**