Triple Integral

  • Thread starter dwn
  • Start date

dwn

165
2
1. The problem statement, all variables and given/known data

Image attached of problem.

2. Relevant equations

Not sure how this applies.

3. The attempt at a solution

∫(o to ∞) ∫(0 to 5) ∫(0 to 4) 16xy dydxdz
Below, I have completed the integrations in order (dydxdyz):

∫dy : 8xy2|(0 to 4) = 128 x

∫dx : 64x2 = 64(25) = 1600

∫dz : 1600z| (o to ∞)

Do I set a limit on the integration dz, or set it at infinite?
 

Attachments

tiny-tim

Science Advisor
Homework Helper
25,786
242
hi dwn! :smile:
∫(o to ∞) ∫(0 to 5) ∫(0 to 4) 16xy dydxdz
Below, I have completed the integrations in order (dydxdyz):

∫dy : 8xy2|(0 to 4) = 128 x

∫dx : 64x2 = 64(25) = 1600

∫dz : 1600z| (o to ∞)

Do I set a limit on the integration dz, or set it at infinite?
the limits of z depend on x and y

so you must integrate wrt z first (from 0 to … ? :wink:)
 

Dick

Science Advisor
Homework Helper
26,252
614
1. The problem statement, all variables and given/known data

Image attached of problem.

2. Relevant equations

Not sure how this applies.

3. The attempt at a solution

∫(o to ∞) ∫(0 to 5) ∫(0 to 4) 16xy dydxdz
Below, I have completed the integrations in order (dydxdyz):

∫dy : 8xy2|(0 to 4) = 128 x

∫dx : 64x2 = 64(25) = 1600

∫dz : 1600z| (o to ∞)

Do I set a limit on the integration dz, or set it at infinite?
If you want to set this up as a triple integral, then since you are trying to find volume, your integrand should be 1. And I would integrate over dz first. And the upper value of z will correspond to its value on the boundary surface. Then integrate over x and y.
 

dwn

165
2
If I want to set this up as a triple integral? Just out of curiosity...what other method? I am going to calculate this using the triple, but I would like to know for my own selfish reasons.

How do I go about finding ;) ? When you say that it depends on x and y....I can't just make it any constant, can I?
 

Dick

Science Advisor
Homework Helper
26,252
614
If I want to set this up as a triple integral? Just out of curiosity...what other method? I am going to calculate this using the triple, but I would like to know for my own selfish reasons.

How do I go about finding ;) ? When you say that it depends on x and y....I can't just make it any constant, can I?
You can also find the volume by integrating (height)dxdy. It's not really a different method, you just aren't writing the z integration out explicitly. Same thing. And the limit of z isn't any constant. It's the value of z on the bounding surface as a function of x and y. Don't think too hard about this.
 

dwn

165
2
#smackforehead : just set the integral dz from 0 to z....
 

Dick

Science Advisor
Homework Helper
26,252
614
#smackforehead : just set the integral dz from 0 to z....
.... means just set the integral dz from z=0 to z=16xy, right?
 

dwn

165
2
exactly. So does this "thickheaded" thinking go away at some point? :)
 

Dick

Science Advisor
Homework Helper
26,252
614
exactly. So does this "thickheaded" thinking go away at some point? :)
As far as this topic goes it should be going away already. You seem to be pretty clear on how obvious the answer is.
 

tiny-tim

Science Advisor
Homework Helper
25,786
242
hi dwn! :smile:

(just got up :zzz:)

when you perform the first integration (in this case, z) in a triple integral to find a volume,

you are essentially finding the volume of a tall thin square slice of the volume, of sides dx and dy …

its volume obviously is (approximately) dxdy times the height,

ie dxdy times [z(x,y) - zo(x,y)]​

where z = z(x,y) is the equation of the top surface, and z = zo(x,y) is the equation of the bottom surface (in this case, the constant z = 0) :wink:

btw, you will notice that the limits of integration for all variables except the last in a multiple integral will generally not be constants, but will generally depend on the later variables!
 

Want to reply to this thread?

"Triple Integral" You must log in or register to reply here.

Physics Forums Values

We Value Quality
• Topics based on mainstream science
• Proper English grammar and spelling
We Value Civility
• Positive and compassionate attitudes
• Patience while debating
We Value Productivity
• Disciplined to remain on-topic
• Recognition of own weaknesses
• Solo and co-op problem solving

Top Threads

Top