This almost seems to easy to be true. Is there anything wrong with this:(adsbygoogle = window.adsbygoogle || []).push({});

[itex]\mbox{Find} \int_0^1 x^p\, (ln\, {x})^3 \, dx [/itex]

[itex]\mbox{First let } F(p) = \int_0^1 x^p\,dx = \frac{x^{p+1}}{p+1} |_0^1 = \frac{1}{p+1}[/itex]

[itex]\frac{\partial}{\partial p}( \frac{1}{p+1}) = \frac{-1}{(p+1)^2}[/itex]

[itex]\mbox{then }F'(p) = \int_0^1 x^p\,ln\,x\,dx = \frac{-1}{(p+1)^2}[/itex]

[itex]\mbox{so now let } G(p) = \int_0^1 x^p\,ln\,x\,dx = \frac{-1}{(p+1)^2}[/itex]

[itex]\frac{\partial}{\partial p} (\frac{-1}{(p+1)^2}) = \frac{2}{(p+1)^3}[/itex]

[itex]\mbox{then }G'(p) = \int_0^1 x^p\,(ln\,x)^2\,dx = \frac{2}{(p+1)^3} [/itex]

[itex]\mbox{Finally let } H(p) = \int_0^1 x^p\,(ln\,x)^2\,dx = \frac{2}{(p+1)^3} [/itex]

[itex]\frac{\partial}{\partial p}( \frac{2}{(p+1)^3}) = \frac{-6}{(p+1)^4}[/itex]

[itex]\mbox{therefore } H'(p) = \int_0^1 x^p\,(ln\,x)^3\,dx = \frac{-6}{(p+1)^4}[/itex]

**Physics Forums - The Fusion of Science and Community**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Trouble with an integral

Loading...

Similar Threads - Trouble integral | Date |
---|---|

I A troubling definite integral | Aug 8, 2016 |

B Trouble converting definite integrals to Riemann's and back | Apr 21, 2016 |

Trouble with this integral | Apr 27, 2014 |

Trouble with integral and derivatives | Jan 24, 2014 |

Having trouble understanding this integration | Dec 19, 2013 |

**Physics Forums - The Fusion of Science and Community**