• Support PF! Buy your school textbooks, materials and every day products via PF Here!

Trouble with surface integral

  • Thread starter Log
  • Start date

Log

23
0
1. The problem statement, all variables and given/known data
Given is the vector field, [itex]\overline{A}[/itex] = (x2-y2, (x+y)2, (x-y)2). The surface: [itex]\overline{B}[/itex] = (u+v, u-v, uv). The restrictions are the following: -1≤ u, v≤ 1, and the z-component of the normal has to be positive.
Calculate I, I = ∫∫[itex]\overline{A}[/itex][itex]\cdot[/itex][itex]\overline{n}[/itex]dS

2. Relevant equations




3. The attempt at a solution
What I did was I first tried calculating the normal by using the cross product between the two vectors tangent to the surface. This however got me a normal vector with a z component equal to zero. Then I tried expressing u and v in terms of x and y, plugging that into the parameter for z, z = uv, got me z as a function of x and y. I then defined a potential, Φ = z - f(x,y), where z = f(x,y). Calculating n=∇Φ got me a normal vector with non-zero z-component. Easy.

Next I calculated the dot product between the vector field, A, and the normal, n, in terms of u and v. This is where I got stuck. I'm not sure how to calculate the integral given the boundaries above.

-1≤ u, v≤ 1 is the same as -1≤ u< ∞, -∞< v ≤ 1. I tried integrating with respect to one of the variables but what happens with the infinites when evaluating the result?

Maybe I missed something, my calculus skills are a little bit rusty at the moment.

Oh, I was wondering, how come the normal vectors calculated from the cross product and gradient are different? aren't they supposed to be the same?
 

LCKurtz

Science Advisor
Homework Helper
Insights Author
Gold Member
9,470
716
1. The problem statement, all variables and given/known data
Given is the vector field, [itex]\overline{A}[/itex] = (x2-y2, (x+y)2, (x-y)2). The surface: [itex]\overline{B}[/itex] = (u+v, u-v, uv). The restrictions are the following: -1≤ u, v≤ 1, and the z-component of the normal has to be positive.
Calculate I, I = ∫∫[itex]\overline{A}[/itex][itex]\cdot[/itex][itex]\overline{n}[/itex]dS

2. Relevant equations




3. The attempt at a solution
What I did was I first tried calculating the normal by using the cross product between the two vectors tangent to the surface. This however got me a normal vector with a z component equal to zero.
Show us your steps. I don't get zero in the 3rd component.

Then I tried expressing u and v in terms of x and y, plugging that into the parameter for z, z = uv, got me z as a function of x and y. I then defined a potential, Φ = z - f(x,y), where z = f(x,y). Calculating n=∇Φ got me a normal vector with non-zero z-component. Easy.

Next I calculated the dot product between the vector field, A, and the normal, n, in terms of u and v. This is where I got stuck. I'm not sure how to calculate the integral given the boundaries above.

-1≤ u, v≤ 1 is the same as -1≤ u< ∞, -∞< v ≤ 1. I tried integrating with respect to one of the variables but what happens with the infinites when evaluating the result?

Maybe I missed something, my calculus skills are a little bit rusty at the moment.

Oh, I was wondering, how come the normal vectors calculated from the cross product and gradient are different? aren't they supposed to be the same?
You want to leave it all in terms of u and v. And use the formula$$
\iint_S \vec F\cdot \hat n dS = \pm\iint_{(u,v)}\vec F(u,v)\cdot \vec R_u\times \vec R_v\, dudv$$using the appropriate sign to agree with your orientation (plus if ##\vec R_u\times \vec R_v## is in the right direction).
 

Log

23
0
I calculated the normal again and got it to be:
n = (-(u + v), u - v, 2).
This has a z-component > 0.

Then I expressed A in terms of u and v:
A = (uv, u2, v2).

The dot product of A and n is:
4(2v2 + u3 - 2u2v - uv2)

I can't see how the integral of this is going to be finite, given the boundaries.
 

vela

Staff Emeritus
Science Advisor
Homework Helper
Education Advisor
14,377
1,074
I think the problem intends for you to take ##-1 \le u \le 1## and ##-1 \le v \le 1##.
 

Log

23
0
I think the problem intends for you to take ##-1 \le u \le 1## and ##-1 \le v \le 1##.
Ahhh, you're right!

I thought the comma was there to separate.

Thanks!
 

Want to reply to this thread?

"Trouble with surface integral" You must log in or register to reply here.

Physics Forums Values

We Value Quality
• Topics based on mainstream science
• Proper English grammar and spelling
We Value Civility
• Positive and compassionate attitudes
• Patience while debating
We Value Productivity
• Disciplined to remain on-topic
• Recognition of own weaknesses
• Solo and co-op problem solving
Top