Hi, I've got a commutator relation I'm trying to figure out here. I don't know what I'm doing wrong, but I don't seem to be able to get it right, so hopefully someone can help me through it.(adsbygoogle = window.adsbygoogle || []).push({});

Anyway, here's the problem. We're given the Dirac Hamiltonian [tex]H_D = \alpha_j p_j + \beta m[/tex], where [tex]p_j = -i\nabla_j[/tex] and the angular momentum components [tex]L_k = i\epsilon_{kln}x_lp_n[/tex]. We are then going to show the commutator relation

[tex] [H_D,L_k] = -i\epsilon_{kln}\alpha_lp_n[/tex]

Here's what I've got so far:

[tex][H_D,L,k]\psi = (H_DL_k-L_kH_D)\psi[/tex]

[tex]=(\alpha_j p_j+\beta m)i\epsilon_{kln}x_lp_n\psi -i\epsilon_{kln}x_lp_n(\alpha_jp_j+\beta m)\psi[/tex]

[tex]=\alpha_j p_j i\epsilon_{kln}x_lp_n\psi +\beta mi\epsilon_{kln}x_lp_n\psi -i\epsilon_{kln}x_lp_n\alpha_jp_j\psi-i\epsilon_{kln}x_lp_n\beta m\psi[/tex]

So far, (hopefully) so good. Now, as far as I can see, the second and the last part cancel, so we're left with

[tex][H_D,L_k]\psi = \alpha_j p_j i\epsilon_{kln}x_lp_n\psi - i\epsilon_{kln}x_lp_n\alpha_jp_j\psi[/tex]

Rewriting the first part we get

[tex]i\epsilon_{kln}p_n\alpha_j p_j(x_l\psi)[/tex]

and knowing that [tex]p_j[/tex] is a differential operator, we use the product rule, and get

[tex]i\epsilon_{kln}p_n(\psi \alpha_j p_j x_l + x_l\alpha_jp_j \psi)[/tex]

We then have that [tex]p_j x_l = -i[/tex] for j = l, and 0 for j != l. Thus

[tex]i\epsilon_{kln}p_n(-i\alpha_l\psi + x_l\alpha_jp_j\psi)= \epsilon_{kln}p_n\alpha_l \psi+i\epsilon_{kln}p_nx_l\alpha_jp_j\psi[/tex]

Putting this back in we get

[tex][H_D,L_k]\psi = \epsilon_{kln}p_n\alpha_l \psi+i\epsilon_{kln}p_nx_l\alpha_jp_j\psi- i\epsilon_{kln}x_lp_n\alpha_jp_j\psi[/tex]

But now the last two parts cancel, and we're left with

[tex][H_D,L_k]\psi = \epsilon_{kln}p_n\alpha_l \psi[/tex]

This is almost what I was supposed to get, only the factor -i is missing. It seems so close, so hopefully I'm not way off, but, where did I go wrong?!?!?!?

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Troublesome commutator

**Physics Forums | Science Articles, Homework Help, Discussion**