hello all(adsbygoogle = window.adsbygoogle || []).push({});

how would one prove that [tex]\lim_{n\rightarrow\infty}\frac{x^{n+1}}{(n+1)!}=0[/tex] [tex]\forall x\in\Re [/tex] now when i try to plot it on mathematica for x=200, on the plot it displays that [tex]200^{n+1}>(n+1)![/tex] how could it possibly converge for any value of x? the reason why i need to prove this is because im trying to show that a function is analytic, would somebody have an anology or a graphical explaination of what is meant by an analytic function?

Steven

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Try to plot it on mathematica for x=200

**Physics Forums | Science Articles, Homework Help, Discussion**