trying to define n/m when it exists in N.(adsbygoogle = window.adsbygoogle || []).push({});

suppose m and n are natural numbers and let [n,m] denote all functions from n (which is {0=Ø, 1, ..., n-1})ontom. if [n,m] is empty, stop and say that m does not divide n.

consider the subset of functions f in [n,m] such that ~ defines an equivalence relation on n where x~y iff f(x)=f(y) and that each equivalence class has the same size q. call this set [[n,m]]. i'm guessing that if [[n,m]] is nonempty then it will be the same q for all functions in [n,m] such that ~ defines an equivalence relation partitioning n into equal sized parts (m parts each having q elements).

i suppose this is equivalent to saying

[[n,m]]={f in [n,m] : for all z in m, card(f^{-1}({z})) is constant}.

definition: if [[n,m]] is nonempty then let n/m=q. if [[n,m]] is empty say that m does not divide n.

question: n/m=q in this sense if and only if n/m=q in the usual sense? (i'll also have to decide if q is well defined.)

this is a definition of division not obviously equivalent to "the inverse of multiplication." one can now define multiplication to be the inverse of division!

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Trying to define n/m when it exists in N.suppose m and n are

**Physics Forums | Science Articles, Homework Help, Discussion**