1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Tunelling and transmission

  1. Apr 22, 2013 #1
    Lets say we have a tunelling problem in the picture, where ##W_p## is a finite potential step:


    If particle is comming from the left a general solutions to the Schrödinger equations for sepparate intervals I, II and II are:

    \text{I:}& & \psi_1 &= \overbrace{A e^{i\mathcal L x}}^{\psi_{in}} + \overbrace{Be^{-i \mathcal L x}}^{\psi_{re}}& \mathcal L &= \sqrt{\tfrac{2mW}{\hbar^2}}\\
    \text{II:}& & \psi_2 &= C e^{\mathcal K x} + De^{-\mathcal K x}& \mathcal K &= \sqrt{-\tfrac{2m(W-W_p)}{\hbar^2}}\\
    \text{III:}& & \psi_3 &= \underbrace{E e^{i \mathcal L x}}_{\psi_{tr}}& &\\

    Where ##\psi_{in}## is an incomming wave, ##\psi_{re}## is a reflected wave and ##\psi_{tr}## is transmitted wave. I used the boundary conditions and got a system of 4 equations:

    {\tiny\text{boundary}}&{\tiny\text{conditions at x=0:}} & {\tiny\text{boundary conditions}}&{\tiny\text{at x=d:}}\\
    A + B &= C + D & Ce^{\mathcal K d} + De^{-\mathcal K d} &= E e^{i \mathcal L d}\\
    i \mathcal L A - i \mathcal L B &= \mathcal KC - \mathcal K D & \mathcal K C e^{\mathcal K d} - \mathcal K D e^{-\mathcal K d}&= i \mathcal L E e^{i \mathcal L d}

    So now i decided to calculate coefficient of transmission ##T##:

    T &= \dfrac{|j_{tr}|}{|j_{in}|} \!=\! \Bigg|\dfrac{\dfrac{\hbar }{2mi}\! \left( \dfrac{d\overline{\psi}_{tr}}{dx}\, \psi_{tr} - \dfrac{d \psi_{tr}}{dx}\, \overline{\psi}_{tr} \right)}{\dfrac{\hbar}{2mi} \!\left( \dfrac{d\overline{\psi}_{in}}{dx}\, \psi_{in} - \dfrac{d\psi_{in}}{dx}\, \overline{\psi}_{in} \right) }\Bigg| \!=\! \Bigg|\dfrac{\frac{d}{dx}\big(\overbrace{Ee^{-i\mathcal L x}}^{\text{konjug.}}\big) Ee^{i\mathcal L x} - \frac{d}{dx} \left( Ee^{i\mathcal L x}\right)\! \overbrace{Ee^{-i\mathcal L x}}^{\text{konjug.}}}{ \frac{d}{dx}\big(\underbrace{Ae^{-i\mathcal L x}}_{\text{konjug.}}\big) Ae^{i\mathcal L x} - \frac{d}{dx} \left( Ae^{i\mathcal L x}\right)\! \underbrace{Ae^{-i\mathcal L x}}_{\text{konjug.}}}\Bigg|\! = \nonumber\\
    &=\Bigg|\dfrac{-i\mathcal L Ee^{-i\mathcal L x} E e^{i \mathcal L x} - i\mathcal L E e^{i \mathcal L x} Ee^{-i \mathcal L x}}{-i \mathcal L A e^{-i\mathcal L x} Ae^{i \mathcal L x} - i \mathcal L A e^{i \mathcal L x}Ae^{-i \mathcal L x} }\Bigg|=\Bigg|\dfrac{-i\mathcal L E^2 - i\mathcal L E^2}{-i \mathcal L A^2 - i \mathcal L A^2}\Bigg|=\Bigg|\dfrac{-2 i \mathcal L E^2}{-2i\mathcal L A^2}\Bigg| = \frac{|E|^2}{|A|^2}

    It accured to me that if out of 4 system equations i can get amplitude ratio ##E/A##, i can calculate ##T## quite easy. Could anyone show me how do i get this ratio?
    Last edited: Apr 22, 2013
  2. jcsd
  3. Apr 22, 2013 #2


    User Avatar

    Staff: Mentor

    In the four equations above, you have five coefficients A, B, C, D, E. Imagine that A (the amplitude of the wave incoming from the left) is "given." Then you have four "unknowns" B, C, D, E. Solve for E. It will look like E = [something]·A.

    There are obviously many routes to solving four equations in four unknowns, algebraically.
  4. Apr 25, 2013 #3
    I know that i can for start write system in a matrix form. But how can i now get the ratio ##E/A## that i need?

    -1 & 1 & 1 & 0 \\ i \mathcal L & \mathcal K & -\mathcal K & 0 \\ 0 & e^{\mathcal Kd} & e^{-\mathcal Kd} & -e^{i\mathcal Ld} \\ 0 & \mathcal Ke^{\mathcal Kd} & -\mathcal Ke^{-\mathcal Kd} & -i\mathcal Le^{i\mathcal Ld}
    B \\ C \\ D \\ E
    A \\ i\mathcal LA \\ 0 \\ 0
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?
Draft saved Draft deleted

Similar Discussions: Tunelling and transmission
  1. Transmission line (Replies: 0)