If you have a rectangular square potential barrier of some height, say [tex]\lambda/L[/tex], and thickness L, what is the transmission coefficient and what is its value in the limit that L goes to 0?(adsbygoogle = window.adsbygoogle || []).push({});

Thus you have the height of the barrier going to infinity, while the width goes to zero... Assuming some fixed incident energy, the probability amplitude decays exponentially as it enters the wall, but since the barrier is thinner, there is less room for that decay. It seems obvious to me that the exponential wins out, but I'm not really sure... Would the transmission be zero for such a barrier? The alternative, I suppose, would be 1, meaning that the barrier is so infinitely thin that the particle doesn't even see it, which doesn't make a lot of sense either.

**Physics Forums - The Fusion of Science and Community**

# Tunneling / Transmission Through a potential barrier that is infinitely high and thin

Know someone interested in this topic? Share a link to this question via email,
Google+,
Twitter, or
Facebook

- Similar discussions for: Tunneling / Transmission Through a potential barrier that is infinitely high and thin

Loading...

**Physics Forums - The Fusion of Science and Community**