Tunneling / Transmission Through a potential barrier that is infinitely high and thin

If you have a rectangular square potential barrier of some height, say [tex]\lambda/L[/tex], and thickness L, what is the transmission coefficient and what is its value in the limit that L goes to 0?

Thus you have the height of the barrier going to infinity, while the width goes to zero... Assuming some fixed incident energy, the probability amplitude decays exponentially as it enters the wall, but since the barrier is thinner, there is less room for that decay. It seems obvious to me that the exponential wins out, but I'm not really sure... Would the transmission be zero for such a barrier? The alternative, I suppose, would be 1, meaning that the barrier is so infinitely thin that the particle doesn't even see it, which doesn't make a lot of sense either.
It will go to a constant.
$$T=|t|^2= \frac{1}{1+\frac{V_0^2\sinh^2(k_1 L)}{4E(V_0-E)}}$$
where $$k_1=\sqrt{2m (V_0-E)/\hbar^{2}}$$
Plugging in ##V_0 = \lambda/L## we get
$$k_1 L=L \sqrt{2m (\lambda/L-E)/\hbar^{2}} \approx \sqrt{2m \lambda L/\hbar^2}$$
This goes to zero for decreasing L. As ##\sinh(x) \approx x## for small x we get
$$T \approx \frac{1}{1+\frac{V_0^2 \,2m \lambda L}{4E(V_0-E) \hbar^2}} = \frac{1}{1+\frac{m}{2\hbar^2}\frac{\lambda^3 }{E(\lambda-EL)}} \approx \frac{1}{1+\frac{m}{2\hbar^2}\frac{\lambda^2 }{E}}$$

Want to reply to this thread?

"Tunneling / Transmission Through a potential barrier that is infinitely high and thin" You must log in or register to reply here.

Physics Forums Values

We Value Quality
• Topics based on mainstream science
• Proper English grammar and spelling
We Value Civility
• Positive and compassionate attitudes
• Patience while debating
We Value Productivity
• Disciplined to remain on-topic
• Recognition of own weaknesses
• Solo and co-op problem solving

Hot Threads