Two-Dimensional Collisions

  • Thread starter Bri
  • Start date
  • Tags
    Collisions
In summary: Find the speeds of the pucks after the collision if half the kinetic energy is lost during the collision.(6) KEi = (1/2) m1 vi1^2 + (1/2) m2 vi2^2 KEi = (1/2) m1 ( 100 ) KEi = 50 m1
  • #1
Bri
20
0
The mass of the blue puck in the figure is 20.0% greater than the mass of the green one. Before colliding the, the pucks approach each other with momenta of equal magnitudes and opposite directions, and the green puck has an initial speed of 10.0 m/s. Find the speeds of the pucks after the collision if half the kinetic energy is lost.

Code:
[COLOR=Green]
          /
         /
        /   A
O-->---   [/COLOR][COLOR=Blue]---<--O
     B   /
        /
       /
[/COLOR]

Angles A and B are 30 degrees.

I calculated the initial velocity of the blue puck to be 25/3 m/s. I've tried setting the initial Kinetic energy in the x and y directions equal to two times the final Kinetic energy in the x and y directions and solving the system of equations, but it doesn't work out.
Could someone please tell me how I should set this up so I can solve it?
Thanks.
 
Physics news on Phys.org
  • #2
You need to apply:
(1) conservation of momentum
(2) the fact that the total KE after the collision is half what it was before the collision.
 
  • #3
Do I need conservation of momentum to solve for the final speeds?
Should I be separating it into two equations for KE and Momentum, one for in the x direction and one for in the y direction? And wouldn't I end up with 4 equations then? What would I do with them?

I used momentum to find the initial velocity of the blue puck. So far I've been using these equations to try to solve this...

KE(Blue, initial, x direction) + KE(Green, initial, x direction) = 2*KE(Blue, final, x direction) + 2*KE(Green, final, x direction)

KE(Blue, initial, y direction) + KE(Green, initial, y direction) = 2*KE(Blue, final, y direction) + 2*KE(Green, final, y direction)

I simplified those and solved the system.
 
Last edited:
  • #4
Bri said:
Do I need conservation of momentum to solve for the final speeds?
Should I be separating it into two equations for KE and Momentum, one for in the x direction and one for in the y direction? And wouldn't I end up with 4 equations then? What would I do with them?
It's much simpler than all that. You have two unknowns (the final speeds of the pucks), but you also have two equations:
(1) conservation of momentum: What's the total momentum of the system?
(2) the fact that the total KE after the collision is half what it was before the collision

That's all you need. (Here's a hint: Let the mass of the green puck = m; then the mass of the blue puck = 1.2m. You know the initial speeds of the pucks so you should be able to figure out the initial KE, at least in terms of m.)
 
  • #5
Ok, so I used:

m(b) = 1.2m(g)
v(bi) = 25/3 m/s
v(gi) = 10 m/s

m(b)v(bi) + m(g)v(gi) = m(b)v(bf) + m(g)v(gf)
1.2m(g)v(bi) + m(g)v(gi) = 1.2m(g)v(bf) + m(g)v(gf)
1.2v(bi) + v(gi) = 1.2v(bf) + v(gf)
20 = 1.2v(bf) + v(gf)

.5m(b)v(bi)^2 + .5m(g)v(gi)^2 = m(b)v(bf)^2 + m(g)v(gf)^2
275/3 = 1.2v(bf)^2 + v(gf)^2

I solved for v(gf) in the momentum equation and put it in the kinetic energy equation and set the equation equal to zero to get

0 = 2.64v(bf)^2 - 48v(bf) + 925/3

There's no solution.
 
  • #6
If I didn't make any math errors, the KE before the collision is 65*m(g)

So the KE after the collision is 32.5*m(g) which will be equal to

.5*m(g)*v(g2)^2 + .5*(1.2*m(g))*v(b2)^2

Note that the m(g) terms cancel out leaving
32.5 = .5*v(g2)^2 + .5*1.2*v(b2)^2

constrained by m(g)*v(g2) + 1.2*m(g)*v(b2) = 0
(post momentum = pre momentum = 0)

this is the same as saying v(g2) = -1.2*v(b2) ---- so it you stick the value of v(g2) in terms of v(b2) into the Post-KE expression, don't you get v(b2) and thus v(g2) or have I missed something?
 
Last edited:
  • #7
Bri said:
Ok, so I used:

m(b) = 1.2m(g)
v(bi) = 25/3 m/s
v(gi) = 10 m/s
Realize that the pucks move in opposite directions.

m(b)v(bi) + m(g)v(gi) = m(b)v(bf) + m(g)v(gf)
1.2m(g)v(bi) + m(g)v(gi) = 1.2m(g)v(bf) + m(g)v(gf)
1.2v(bi) + v(gi) = 1.2v(bf) + v(gf)
20 = 1.2v(bf) + v(gf)
Since "the pucks approach each other with momenta of equal magnitudes and opposite directions", what must be the total momentum?
 
  • #8
Woohoo! I got it now...
Had to set the momentum to 0, not 20. Setting one of their velocities to negative because of their opposite direction slipped past me.
Thanks so much for all the help!
 
  • #9


PSE 5E PRO 9.30
PSE 6E PRO 9.31

The mass of the blue puck in Figure P9.30 is 20.0% greater than the
mass of the green one. Before colliding, the pucks approach each other
with equal and opposite momenta, and the green puck has an initial
speed of 10.0 m/s. Find the speeds of the pucks after the collision if
half the kinetic energy is lost during the collision.

----------------------------------------------------------------------

The mass of the blue puck in Figure P9.30 is 20.0% greater
than the mass of the green one.

(1) m2 = m1 + 0.2 m1

m2 = m1 ( 1 + 0.2 )

m2 = m1 ( 1.2 )

m2 = 1.2 m1

Before colliding, the pucks approach each other with equal and
opposite momenta,

(2) pi1 = - pi2

pi1 = m1 vi1

pi2 = m2 vi2

the green puck has an initial speed of 10.0 m/s

(3) vi1 = 10

(4) pi = pf

pi = pi1 + pi2

pf = pf1 + pf2

pf1 = m1 vf1

pf2 = m2 vf2

(5) Ef = 1/2 Ei

Ei = Ki1 + Ki2

Ef = Kf1 + Kf2

Ki1 = 1/2 m1 vi1^2

Ki2 = 1/2 m2 vi2^2

Kf1 = 1/2 m1 vf1^2

Kf2 = 1/2 m2 vf2^2

----------------------------------------------------------------------

(2): pi1 = - pi2

m1 vi1 = - m2 vi2

m1 vi1 = - (1.2 m1) vi2

vi1 = - 1.2 vi2

vi2 = - vi1 / 1.2

vi2 = - 8.33

(4): pi = pf

pi1 + pi2 = pf1 + pf2

(- pi2) + pi2 = pf1 + pf2

0 = pf1 + pf2

0 = m1 vf1 + m2 vf2

0 = m1 vf1 + (1.2 m1) vf2

0 = vf1 + (1.2) vf2

vf2 = - vf1 / 1.2

----------------------------------------------------------------------

(5): Ef = 1/2 Ei

Kf1 + Kf2 = 1/2 (Ki1 + Ki2)

1/2 m1 vf1^2 + 1/2 m2 vf2^2 = 1/2 (1/2 m1 vi1^2 + 1/2 m2 vi2^2)

m1 vf1^2 + m2 vf2^2 = 1/2 m1 vi1^2 + 1/2 m2 vi2^2

m1 vf1^2 + (1.2 m1) vf2^2 = 1/2 m1 vi1^2 + 1/2 (1.2 m1) vi2^2

vf1^2 + (1.2) vf2^2 = 1/2 vi1^2 + 1/2 (1.2) vi2^2

vf1^2 + (1.2) (- vf1 / 1.2)^2 = 1/2 vi1^2 + 1/2 (1.2) vi2^2

vf1^2 + vf1^2 / 1.2 = 1/2 vi1^2 + 1/2 (1.2) vi2^2

vf1^2 ( 1 + 1 / 1.2 ) = 1/2 vi1^2 + 1/2 (1.2) vi2^2

vf1^2 = ( 1/2 vi1^2 + 1/2 (1.2) vi2^2 ) / ( 1 + 1 / 1.2 )

vf1 = sqrt[ ( 1/2 vi1^2 + 1/2 (1.2) vi2^2 ) / ( 1 + 1 / 1.2 ) ]

vf1 = 7.07

----------------------------------------------------------------------

vf2 = - 5.89

----------------------------------------------------------------------


Also available at: https://gist.github.com/808567
 

1. What is a two-dimensional collision?

A two-dimensional collision occurs when two objects collide in a two-dimensional space, such as on a flat surface. This is in contrast to a three-dimensional collision, which occurs in a three-dimensional space, such as in the air or in outer space.

2. How is momentum conserved in a two-dimensional collision?

In a two-dimensional collision, momentum is conserved in both the x and y directions. This means that the total momentum of the objects before the collision is equal to the total momentum of the objects after the collision.

3. What is the difference between an elastic and inelastic collision in two dimensions?

In an elastic collision, both kinetic energy and momentum are conserved. This means that the objects involved in the collision bounce off each other without any loss of energy. In an inelastic collision, kinetic energy is not conserved and some energy is lost to other forms, such as heat or sound.

4. How are the velocities of the objects calculated after a two-dimensional collision?

The velocities of the objects after a two-dimensional collision can be calculated using the conservation of momentum and kinetic energy equations. These equations take into account the mass, initial velocities, and final velocities of the objects involved in the collision.

5. Can two-dimensional collisions be accurately modeled in real life?

While two-dimensional collisions can be accurately modeled in theory, it is difficult to replicate them exactly in real life due to factors such as friction and air resistance. However, simplified models can still provide useful insights and understanding of the principles behind two-dimensional collisions.

Similar threads

  • Introductory Physics Homework Help
Replies
4
Views
2K
Replies
4
Views
1K
  • Introductory Physics Homework Help
Replies
4
Views
2K
  • Introductory Physics Homework Help
Replies
6
Views
892
  • Introductory Physics Homework Help
Replies
3
Views
2K
  • Introductory Physics Homework Help
Replies
2
Views
3K
  • Introductory Physics Homework Help
Replies
4
Views
1K
  • Introductory Physics Homework Help
Replies
3
Views
1K
  • Introductory Physics Homework Help
Replies
4
Views
3K
  • Introductory Physics Homework Help
Replies
2
Views
1K
Back
Top