Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Two questions about degree

  1. Mar 12, 2009 #1


    User Avatar
    Science Advisor
    Homework Helper
    Gold Member

    (1) For a continuous map f:S^n-->S^n, the induced map in top homology is, up to identification of H_n(S^n) with Z, just multiplication by an integer, and this integer is defined as the degree of f. (in Hatcher: http://www.math.cornell.edu/~hatcher/AT/ATpage.html)

    Now, in the event that f is a homeomorphism, it follows from the elementary properties of the degree that deg(f)=±1. After this remark, Hatcher adds that in applications, it is usually not hard to determine which it is between +1 and -1.

    Can someone give an example illustrating how one decides between +1 and -1?

    (2) How to see why the above definition of degree coincide with the one in terms of preimage of regular value in the case of a differentiable f?

  2. jcsd
  3. Mar 21, 2009 #2
    Give the sphere an orientation. A smooth homeomorphism that preserves orientation will have degree one. If it reverses orientation it will have degree minus one. This you can tell from the determinant of the Jacobian at any point where the Jacobian has maximal rank.

    If the map is not differentiable but only continuous it may be difficult to tell.
    In general you need to follow the fundamental cycle,C, as it is mapped into the sphere
    to the cycle, f(C), and decide whether C-f(C) is a boundary.

    If two differentiable maps are homotopic then they have the same degree. This is always true.

    But for spheres the converse is also true. It two maps from a manifold into a sphere have the same degree then they are homotopic.

    Good examples of maps of arbitrary positive degree on S^2 are complex polynomials on the Riemann sphere.
    Last edited: Mar 21, 2009
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook