Hi, I'm a first year physics student at the University of Oregon and I was hoping that someone here might be able to help me with a problem I've been having.(adsbygoogle = window.adsbygoogle || []).push({});

A question on my assignment asks me to "Use the uncertainty principle to show that if an electron were present in the nucleus (r = approximately 10^-15 m), its kinetic energy (use relativity) would be hundreds of MeV. (Since such electron energies are not observed, we conclude that electrons are not present in the nucleus). [Hint: a particle can have energy as large as its uncertainty.]

Firstly, I decided to use the form of uncertainty principle (delta x)(delta p) is approximately larger than h-bar. I used (10^-15 m) as (delta x) and split (delta p) into m(delta v). I than used the rest mass of an electron (9.11x10^-31 kg) as m and attempted to solve for (delta v). [Using h-bar = 1.055x10^-34 J*s]. Unfortunately, this gave me an answer of (delta v) is approximately larger than (1.15x10^11 m/s)... which of course is much larger than c (3.00x10^8 m/s).

Already I knew there was a problem... when attempting to find K = (gamma - 1)mc^2, gamma becomes something like (382i)^-1/2. This is a definite problem because we haven't begun using non-real numbers (i) in this course yet.

Does anyone see an obvious problem with what I'm doing? Should I be using (delta E)(delta t) approximately larger than h-bar for the uncertainty principle? For my special relativity equation should I use E^2 =(p^2)(c^2) + (m^2)(c^4)?

I've spent several hours on this problem trying every imaginable route and have even come to the conclusion (incorrectly, of course) that [1+ (m^2)(c^2)] is approximately larger than 1/(2pi)^2! Any help is greatly appreciated.

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Uncertainty & Relativity

**Physics Forums | Science Articles, Homework Help, Discussion**